paom's picture
update model card README.md
5c7e808
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnext-tiny-224-finetuned-eurosat-albumentations
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0

convnext-tiny-224-finetuned-eurosat-albumentations

This model is a fine-tuned version of paom/convnext-tiny-224-finetuned-eurosat-albumentations on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6948
  • Accuracy: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.6948 0.0
No log 2.0 2 0.5057 0.0
No log 3.0 3 0.2286 0.0
No log 4.0 4 0.0823 0.0
No log 5.0 5 0.0320 0.0
No log 6.0 6 0.0489 0.0
No log 7.0 7 0.0881 0.0
No log 8.0 8 0.1134 0.0
No log 9.0 9 0.1179 0.0
0.0638 10.0 10 0.1054 0.0
0.0638 11.0 11 0.0826 0.0
0.0638 12.0 12 0.0587 0.0
0.0638 13.0 13 0.0386 0.0
0.0638 14.0 14 0.0241 0.0
0.0638 15.0 15 0.0158 0.0
0.0638 16.0 16 0.0115 0.0
0.0638 17.0 17 0.0096 0.0
0.0638 18.0 18 0.0087 0.0
0.0638 19.0 19 0.0084 0.0
0.0048 20.0 20 0.0083 0.0

Framework versions

  • Transformers 4.29.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3