convnext-tiny-224-finetuned-eurosat-albumentations

This model is a fine-tuned version of paom/convnext-tiny-224-finetuned-eurosat-albumentations on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6948
  • Accuracy: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.6948 0.0
No log 2.0 2 0.5057 0.0
No log 3.0 3 0.2286 0.0
No log 4.0 4 0.0823 0.0
No log 5.0 5 0.0320 0.0
No log 6.0 6 0.0489 0.0
No log 7.0 7 0.0881 0.0
No log 8.0 8 0.1134 0.0
No log 9.0 9 0.1179 0.0
0.0638 10.0 10 0.1054 0.0
0.0638 11.0 11 0.0826 0.0
0.0638 12.0 12 0.0587 0.0
0.0638 13.0 13 0.0386 0.0
0.0638 14.0 14 0.0241 0.0
0.0638 15.0 15 0.0158 0.0
0.0638 16.0 16 0.0115 0.0
0.0638 17.0 17 0.0096 0.0
0.0638 18.0 18 0.0087 0.0
0.0638 19.0 19 0.0084 0.0
0.0048 20.0 20 0.0083 0.0

Framework versions

  • Transformers 4.29.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results