pabRomero's picture
Training complete
b89ae52 verified
|
raw
history blame
1.97 kB
metadata
base_model: dmis-lab/biobert-base-cased-v1.2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BioBERT-full-finetuned-ner-pablo
    results: []

BioBERT-full-finetuned-ner-pablo

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1114
  • Precision: 0.7951
  • Recall: 0.7809
  • F1: 0.7879
  • Accuracy: 0.9690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1541 0.9998 2608 0.1456 0.6888 0.7147 0.7015 0.9601
0.1073 2.0 5217 0.1244 0.7397 0.7450 0.7423 0.9645
0.0744 2.9994 7824 0.1114 0.7951 0.7809 0.7879 0.9690

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1