pabRomero's picture
Training complete
57a09db verified
|
raw
history blame
2.12 kB
metadata
library_name: transformers
base_model: dmis-lab/biobert-base-cased-v1.2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BioBERT-full-finetuned-ner-pablo
    results: []

BioBERT-full-finetuned-ner-pablo

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1081
  • Precision: 0.8057
  • Recall: 0.8003
  • F1: 0.8030
  • Accuracy: 0.9743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9970 252 0.0943 0.7586 0.7859 0.7720 0.9732
0.1716 1.9980 505 0.0917 0.7950 0.7738 0.7843 0.9745
0.1716 2.9990 758 0.0886 0.7956 0.7925 0.7940 0.9742
0.0465 4.0 1011 0.0956 0.8055 0.7971 0.8013 0.9743
0.0465 4.9852 1260 0.1081 0.8057 0.8003 0.8030 0.9743

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1