|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: Bert-Contact-NLI |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Bert-Contact-NLI |
|
|
|
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8520 |
|
- Model Preparation Time: 0.0063 |
|
- Accuracy: 0.7222 |
|
- Precision: 0.7086 |
|
- Recall: 0.7284 |
|
- F1: 0.7134 |
|
- Ratio: 0.3611 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | Precision | Recall | F1 | Ratio | |
|
|:-------------:|:------:|:----:|:---------------:|:----------------------:|:--------:|:---------:|:------:|:------:|:------:| |
|
| No log | 0.9895 | 47 | 0.8446 | 0.0063 | 0.6142 | 0.6097 | 0.5667 | 0.5804 | 0.5340 | |
|
| No log | 2.0 | 95 | 0.7677 | 0.0063 | 0.6821 | 0.6774 | 0.6708 | 0.6636 | 0.3148 | |
|
| No log | 2.9895 | 142 | 0.7705 | 0.0063 | 0.7006 | 0.6919 | 0.6740 | 0.6805 | 0.4043 | |
|
| No log | 4.0 | 190 | 0.7969 | 0.0063 | 0.7006 | 0.6787 | 0.7153 | 0.6915 | 0.3951 | |
|
| No log | 4.9474 | 235 | 0.8520 | 0.0063 | 0.7222 | 0.7086 | 0.7284 | 0.7134 | 0.3611 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|