Bert-Contact-NLI / README.md
osmanh's picture
Training in progress, step 500
b6d7ae1 verified
|
raw
history blame
2.48 kB
metadata
library_name: transformers
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Bert-Contact-NLI
    results: []

Bert-Contact-NLI

This model is a fine-tuned version of MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8520
  • Model Preparation Time: 0.0063
  • Accuracy: 0.7222
  • Precision: 0.7086
  • Recall: 0.7284
  • F1: 0.7134
  • Ratio: 0.3611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Accuracy Precision Recall F1 Ratio
No log 0.9895 47 0.8446 0.0063 0.6142 0.6097 0.5667 0.5804 0.5340
No log 2.0 95 0.7677 0.0063 0.6821 0.6774 0.6708 0.6636 0.3148
No log 2.9895 142 0.7705 0.0063 0.7006 0.6919 0.6740 0.6805 0.4043
No log 4.0 190 0.7969 0.0063 0.7006 0.6787 0.7153 0.6915 0.3951
No log 4.9474 235 0.8520 0.0063 0.7222 0.7086 0.7284 0.7134 0.3611

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3