* 4 new video models * Multiple image models, including SANA & Flux Control * New quantizers -> GGUF & TorchAO * New training scripts Enjoy this holiday-special Diffusers release 🤗 Notes: https://github.com/huggingface/diffusers/releases/tag/v0.32.0
Quite excited by the ModernBERT release! 0.15/0.4B small, 2T modern pre-training data and tokenizer with code, 8k context window, great efficient model for embeddings & classification!
This will probably be the basis for many future SOTA encoders! And I can finally stop using DeBERTav3 from 2021 :D
a new experimental model that unlocks stronger reasoning capabilities and shows its thoughts. The model plans (with thoughts visible), can solve complex problems with Flash speeds, and more
After 6 years, BERT, the workhorse of encoder models, finally gets a replacement: 𝗪𝗲𝗹𝗰𝗼𝗺𝗲 𝗠𝗼𝗱𝗲𝗿𝗻𝗕𝗘𝗥𝗧! 🤗
We talk a lot about ✨Generative AI✨, meaning "Decoder version of the Transformers architecture", but this is only one of the ways to build LLMs: encoder models, that turn a sentence in a vector, are maybe even more widely used in industry than generative models.
The workhorse for this category has been BERT since its release in 2018 (that's prehistory for LLMs).
It's not a fancy 100B parameters supermodel (just a few hundred millions), but it's an excellent workhorse, kind of a Honda Civic for LLMs.
Many applications use BERT-family models - the top models in this category cumulate millions of downloads on the Hub.
➡️ Now a collaboration between Answer.AI and LightOn just introduced BERT's replacement: ModernBERT.
𝗧𝗟;𝗗𝗥: 🏛️ Architecture changes: ⇒ First, standard modernizations: - Rotary positional embeddings (RoPE) - Replace GeLU with GeGLU, - Use Flash Attention 2 ✨ The team also introduced innovative techniques like alternating attention instead of full attention, and sequence packing to get rid of padding overhead.
🥇 As a result, the model tops the game of encoder models: It beats previous standard DeBERTaV3 for 1/5th the memory footprint, and runs 4x faster!
Introducing 📐𝐅𝐢𝐧𝐞𝐌𝐚𝐭𝐡: the best public math pre-training dataset with 50B+ tokens! HuggingFaceTB/finemath
Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.
We build the dataset by: 🛠️ carefully extracting math data from Common Crawl; 🔎 iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.
We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.
We hope this helps advance the performance of LLMs on math and reasoning! 🚀 We’re also releasing all the ablation models as well as the evaluation code.
🕰️ Llama-3.1-405B took 39 million GPU-hours to train, i.e. about 4.5 thousand years.
👴🏻 If they had needed all this time, we would have GPU stories from the time of Pharaoh 𓂀: "Alas, Lord of Two Lands, the shipment of counting-stones arriving from Cathay was lost to pirates, this shall delay the building of your computing temple by many moons "
🛠️ But instead, they just parallelized the training on 24k H100s, which made it take just a few months. This required parallelizing across 4 dimensions: data, tensor, context, pipeline. And it is infamously hard to do, making for bloated code repos that hold together only by magic.
🤏 𝗕𝘂𝘁 𝗻𝗼𝘄 𝘄𝗲 𝗱𝗼𝗻'𝘁 𝗻𝗲𝗲𝗱 𝗵𝘂𝗴𝗲 𝗿𝗲𝗽𝗼𝘀 𝗮𝗻𝘆𝗺𝗼𝗿𝗲! Instead of building mega-training codes, Hugging Face colleagues cooked in the other direction, towards tiny 4D parallelism libs. A team has built Nanotron, already widely used in industry. And now a team releases Picotron, a radical approach to code 4D Parallelism in just a few hundred lines of code, a real engineering prowess, making it much easier to understand what's actually happening!
⚡ 𝗜𝘁'𝘀 𝘁𝗶𝗻𝘆, 𝘆𝗲𝘁 𝗽𝗼𝘄𝗲𝗿𝗳𝘂𝗹: Counting in MFU (Model FLOPs Utilization, how much the model actually uses all the compute potential), this lib reaches ~50% on SmolLM-1.7B model with 8 H100 GPUs, which is really close to what huge libs would reach. (Caution: the team is leading further benchmarks to verify this)
In the past seven days, the Diffusers team has shipped:
1. Two new video models 2. One new image model 3. Two new quantization backends 4. Three new fine-tuning scripts 5. Multiple fixes and library QoL improvements
Coffee on me if someone can guess 1 - 4 correctly.
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute 🔥
How? By combining step-wise reward models with tree search algorithms :)
We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"
We're open sourcing the full recipe and sharing a detailed blog post.
In our blog post we cover:
📈 Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.
🎄 Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.
🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM