opengl106's picture
End of training
a3e85cb verified
|
raw
history blame
3.3 kB
metadata
library_name: transformers
base_model: klue/roberta-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta-small-hangul-2-hanja
    results: []

roberta-small-hangul-2-hanja

This model is a fine-tuned version of klue/roberta-small on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9918
  • F1: 0.9824
  • Loss: 0.0868
  • Precision: 0.9814
  • Recall: 0.9835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
No log 1.0 482 0.8993 0.4607 0.8157 0.6392 0.3602
1.7229 2.0 964 0.9606 0.8537 0.4586 0.8728 0.8354
0.6279 3.0 1446 0.9701 0.9159 0.3291 0.9244 0.9075
0.418 4.0 1928 0.9761 0.9426 0.2596 0.9439 0.9413
0.316 5.0 2410 0.9797 0.9530 0.2159 0.9545 0.9515
0.2553 6.0 2892 0.9821 0.9589 0.1848 0.9608 0.9571
0.213 7.0 3374 0.9832 0.9613 0.1622 0.9616 0.9610
0.1819 8.0 3856 0.9858 0.9707 0.1430 0.9691 0.9722
0.16 9.0 4338 0.9871 0.9712 0.1307 0.9705 0.9719
0.1409 10.0 4820 0.9885 0.9749 0.1197 0.9734 0.9764
0.1295 11.0 5302 0.9893 0.9759 0.1120 0.9747 0.9771
0.1174 12.0 5784 0.9893 0.9763 0.1065 0.9744 0.9782
0.1085 13.0 6266 0.9896 0.9770 0.1005 0.9755 0.9785
0.1011 14.0 6748 0.9905 0.9794 0.0968 0.9786 0.9803
0.0954 15.0 7230 0.9910 0.9801 0.0941 0.9793 0.9810
0.0899 16.0 7712 0.9912 0.9807 0.0916 0.9796 0.9817
0.0866 17.0 8194 0.9917 0.9819 0.0893 0.9810 0.9828
0.0847 18.0 8676 0.9918 0.9824 0.0880 0.9814 0.9835
0.0814 19.0 9158 0.9918 0.9824 0.0870 0.9814 0.9835
0.0822 20.0 9640 0.9918 0.9824 0.0868 0.9814 0.9835

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1