roberta-small-hangul-2-hanja

This model is a fine-tuned version of klue/roberta-small on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9956
  • F1: 0.9902
  • Loss: 0.0352
  • Precision: 0.9894
  • Recall: 0.9911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 150

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
No log 1.0 482 0.8993 0.4607 0.8157 0.6392 0.3602
1.7229 2.0 964 0.9606 0.8537 0.4586 0.8728 0.8354
0.6279 3.0 1446 0.9701 0.9159 0.3291 0.9244 0.9075
0.418 4.0 1928 0.9761 0.9426 0.2596 0.9439 0.9413
0.316 5.0 2410 0.9797 0.9530 0.2159 0.9545 0.9515
0.2553 6.0 2892 0.9821 0.9589 0.1848 0.9608 0.9571
0.213 7.0 3374 0.9832 0.9613 0.1622 0.9616 0.9610
0.1819 8.0 3856 0.9858 0.9707 0.1430 0.9691 0.9722
0.16 9.0 4338 0.9871 0.9712 0.1307 0.9705 0.9719
0.1409 10.0 4820 0.9885 0.9749 0.1197 0.9734 0.9764
0.1295 11.0 5302 0.9893 0.9759 0.1120 0.9747 0.9771
0.1174 12.0 5784 0.9893 0.9763 0.1065 0.9744 0.9782
0.1085 13.0 6266 0.9896 0.9770 0.1005 0.9755 0.9785
0.1011 14.0 6748 0.9905 0.9794 0.0968 0.9786 0.9803
0.0954 15.0 7230 0.9910 0.9801 0.0941 0.9793 0.9810
0.0899 16.0 7712 0.9912 0.9807 0.0916 0.9796 0.9817
0.0866 17.0 8194 0.9917 0.9819 0.0893 0.9810 0.9828
0.0847 18.0 8676 0.9918 0.9824 0.0880 0.9814 0.9835
0.0814 19.0 9158 0.9918 0.9824 0.0870 0.9814 0.9835
0.0822 20.0 9640 0.9918 0.9824 0.0868 0.9814 0.9835
0.0802 21.0 10122 0.9929 0.9922 0.0617 0.9924 0.9920
0.0734 22.0 10604 0.9932 0.9907 0.0562 0.9903 0.9911
0.0665 23.0 11086 0.9942 0.9933 0.0517 0.9937 0.9929
0.0582 24.0 11568 0.9939 0.9924 0.0485 0.9922 0.9926
0.0526 25.0 12050 0.9944 0.9926 0.0452 0.9926 0.9926
0.0468 26.0 12532 0.9947 0.9933 0.0423 0.9926 0.9940
0.0419 27.0 13014 0.9960 0.9945 0.0299 0.9943 0.9947
0.0419 28.0 13496 0.9959 0.9934 0.0352 0.9929 0.9940
0.0382 29.0 13978 0.9964 0.9961 0.0342 0.9954 0.9968
0.0346 30.0 14460 0.9955 0.9940 0.0335 0.9933 0.9947
0.0313 31.0 14942 0.9957 0.9938 0.0318 0.9929 0.9947
0.0286 32.0 15424 0.9958 0.9943 0.0310 0.9936 0.9950
0.026 33.0 15906 0.9961 0.9950 0.0304 0.9943 0.9957
0.0234 34.0 16388 0.9960 0.9940 0.0292 0.9933 0.9947
0.0217 35.0 16870 0.9957 0.9941 0.0279 0.9933 0.9950
0.0198 36.0 17352 0.9958 0.9927 0.0272 0.9922 0.9933
0.0178 37.0 17834 0.9959 0.9933 0.0264 0.9926 0.9940
0.0167 38.0 18316 0.9958 0.9931 0.0266 0.9922 0.9940
0.0149 39.0 18798 0.9960 0.9931 0.0262 0.9922 0.9940
0.0137 40.0 19280 0.9956 0.9925 0.0255 0.9918 0.9933
0.013 41.0 19762 0.9958 0.9927 0.0253 0.9918 0.9936
0.0115 42.0 20244 0.9959 0.9918 0.0250 0.9915 0.9922
0.0107 43.0 20726 0.9957 0.9920 0.0258 0.9911 0.9929
0.0098 44.0 21208 0.9959 0.9931 0.0248 0.9922 0.9940
0.009 45.0 21690 0.9960 0.9920 0.0254 0.9911 0.9929
0.0081 46.0 22172 0.9959 0.9925 0.0258 0.9918 0.9933
0.0075 47.0 22654 0.9956 0.9915 0.0251 0.9904 0.9925
0.0069 48.0 23136 0.9956 0.9913 0.0256 0.9904 0.9922
0.0063 49.0 23618 0.9955 0.9906 0.0262 0.9894 0.9918
0.0055 50.0 24100 0.9959 0.9913 0.0254 0.9904 0.9922
0.0052 51.0 24582 0.9956 0.9911 0.0255 0.9901 0.9922
0.0048 52.0 25064 0.9958 0.9910 0.0256 0.9901 0.9918
0.0044 53.0 25546 0.9954 0.9892 0.0276 0.9883 0.9901
0.0039 54.0 26028 0.9955 0.9897 0.0271 0.9890 0.9904
0.0037 55.0 26510 0.9957 0.9897 0.0275 0.9887 0.9908
0.0037 56.0 26992 0.9957 0.9910 0.0273 0.9901 0.9918
0.0032 57.0 27474 0.9960 0.9910 0.0270 0.9901 0.9918
0.003 58.0 27956 0.9955 0.9904 0.0284 0.9890 0.9918
0.0027 59.0 28438 0.9956 0.9904 0.0287 0.9890 0.9918
0.0024 60.0 28920 0.9955 0.9892 0.0290 0.9876 0.9908
0.0022 61.0 29402 0.9958 0.9910 0.0286 0.9901 0.9918
0.0021 62.0 29884 0.9959 0.9913 0.0286 0.9904 0.9922
0.0019 63.0 30366 0.9954 0.9897 0.0325 0.9883 0.9911
0.0017 64.0 30848 0.9957 0.9906 0.0295 0.9897 0.9915
0.0015 65.0 31330 0.9958 0.9915 0.0289 0.9908 0.9922
0.0014 66.0 31812 0.9957 0.9911 0.0303 0.9901 0.9922
0.0012 67.0 32294 0.9956 0.9904 0.0306 0.9890 0.9918
0.0012 68.0 32776 0.9955 0.9899 0.0312 0.9887 0.9911
0.0011 69.0 33258 0.9956 0.9897 0.0310 0.9883 0.9911
0.001 70.0 33740 0.9957 0.9895 0.0309 0.9883 0.9908
0.001 71.0 34222 0.9957 0.9901 0.0322 0.9897 0.9904
0.0008 72.0 34704 0.9958 0.9901 0.0323 0.9894 0.9908
0.0008 73.0 35186 0.9956 0.9897 0.0312 0.9890 0.9904
0.0007 74.0 35668 0.9957 0.9901 0.0327 0.9894 0.9908
0.0007 75.0 36150 0.9958 0.9911 0.0315 0.9904 0.9918
0.0007 76.0 36632 0.9957 0.9911 0.0318 0.9901 0.9922
0.0006 77.0 37114 0.9958 0.9911 0.0314 0.9901 0.9922
0.0006 78.0 37596 0.9956 0.9904 0.0325 0.9890 0.9918
0.0005 79.0 38078 0.9955 0.9894 0.0318 0.9880 0.9908
0.0005 80.0 38560 0.9957 0.9904 0.0315 0.9901 0.9908
0.0004 81.0 39042 0.9958 0.9897 0.0321 0.9897 0.9897
0.0004 82.0 39524 0.9952 0.9895 0.0340 0.9883 0.9908
0.0005 83.0 40006 0.9956 0.9915 0.0317 0.9908 0.9922
0.0005 84.0 40488 0.9955 0.9901 0.0324 0.9887 0.9915
0.0004 85.0 40970 0.9956 0.9910 0.0320 0.9901 0.9918
0.0003 86.0 41452 0.9957 0.9918 0.0324 0.9911 0.9925
0.0003 87.0 41934 0.9959 0.9915 0.0308 0.9908 0.9922
0.0003 88.0 42416 0.9956 0.9913 0.0337 0.9904 0.9922
0.0003 89.0 42898 0.9956 0.9913 0.0330 0.9904 0.9922
0.0003 90.0 43380 0.9956 0.9890 0.0330 0.9876 0.9904
0.0003 91.0 43862 0.9957 0.9911 0.0341 0.9901 0.9922
0.0003 92.0 44344 0.9956 0.9906 0.0337 0.9894 0.9918
0.0002 93.0 44826 0.9956 0.9906 0.0343 0.9897 0.9915
0.0003 94.0 45308 0.9957 0.9910 0.0336 0.9901 0.9918
0.0002 95.0 45790 0.9954 0.9901 0.0355 0.9887 0.9915
0.0002 96.0 46272 0.9958 0.9904 0.0326 0.9894 0.9915
0.0002 97.0 46754 0.9959 0.9901 0.0334 0.9894 0.9908
0.0002 98.0 47236 0.9959 0.9908 0.0337 0.9897 0.9918
0.0002 99.0 47718 0.9958 0.9908 0.0334 0.9897 0.9918
0.0002 100.0 48200 0.9957 0.9902 0.0347 0.9890 0.9915
0.0002 101.0 48682 0.9953 0.9894 0.0379 0.9873 0.9915
0.0002 102.0 49164 0.9957 0.9902 0.0340 0.9890 0.9915
0.0002 103.0 49646 0.9956 0.9894 0.0336 0.9890 0.9897
0.0001 104.0 50128 0.9954 0.9911 0.0362 0.9901 0.9922
0.0002 105.0 50610 0.9956 0.9902 0.0339 0.9890 0.9915
0.0002 106.0 51092 0.9957 0.9904 0.0339 0.9901 0.9908
0.0002 107.0 51574 0.9957 0.9897 0.0341 0.9900 0.9893
0.0002 108.0 52056 0.9955 0.9897 0.0350 0.9883 0.9911
0.0001 109.0 52538 0.9956 0.9910 0.0334 0.9901 0.9918
0.0001 110.0 53020 0.9954 0.9897 0.0364 0.9887 0.9908
0.0001 111.0 53502 0.9956 0.9886 0.0340 0.9879 0.9893
0.0001 112.0 53984 0.9955 0.9895 0.0346 0.9880 0.9911
0.0001 113.0 54466 0.9954 0.9897 0.0348 0.9887 0.9908
0.0001 114.0 54948 0.9956 0.9906 0.0347 0.9894 0.9918
0.0001 115.0 55430 0.9956 0.9899 0.0342 0.9890 0.9908
0.0001 116.0 55912 0.9957 0.9908 0.0344 0.9901 0.9915
0.0001 117.0 56394 0.9956 0.9895 0.0340 0.9887 0.9904
0.0001 118.0 56876 0.9955 0.9895 0.0347 0.9880 0.9911
0.0001 119.0 57358 0.9955 0.9901 0.0349 0.9887 0.9915
0.0001 120.0 57840 0.9955 0.9892 0.0351 0.9880 0.9904
0.0001 121.0 58322 0.9955 0.9899 0.0359 0.9883 0.9915
0.0001 122.0 58804 0.9955 0.9890 0.0365 0.9873 0.9908
0.0001 123.0 59286 0.9955 0.9883 0.0350 0.9869 0.9897
0.0001 124.0 59768 0.9955 0.9890 0.0344 0.9880 0.9901
0.0001 125.0 60250 0.9956 0.9890 0.0352 0.9897 0.9883
0.0001 126.0 60732 0.9953 0.9887 0.0359 0.9869 0.9904
0.0001 127.0 61214 0.9952 0.9876 0.0360 0.9862 0.9890
0.0001 128.0 61696 0.9953 0.9888 0.0357 0.9869 0.9908
0.0001 129.0 62178 0.9954 0.9888 0.0363 0.9869 0.9908
0.0001 130.0 62660 0.9954 0.9894 0.0360 0.9880 0.9908
0.0001 131.0 63142 0.9956 0.9890 0.0360 0.9883 0.9897
0.0001 132.0 63624 0.9954 0.9885 0.0362 0.9869 0.9901
0.0001 133.0 64106 0.9955 0.9888 0.0356 0.9876 0.9901
0.0001 134.0 64588 0.9954 0.9894 0.0367 0.9876 0.9911
0.0001 135.0 65070 0.9954 0.9894 0.0364 0.9876 0.9911
0.0001 136.0 65552 0.9954 0.9890 0.0363 0.9876 0.9904
0.0 137.0 66034 0.9954 0.9894 0.0369 0.9876 0.9911
0.0001 138.0 66516 0.9954 0.9894 0.0369 0.9876 0.9911
0.0001 139.0 66998 0.9956 0.9902 0.0358 0.9894 0.9911
0.0001 140.0 67480 0.9956 0.9901 0.0360 0.9887 0.9915
0.0001 141.0 67962 0.9957 0.9902 0.0357 0.9894 0.9911
0.0001 142.0 68444 0.9957 0.9902 0.0355 0.9894 0.9911
0.0001 143.0 68926 0.9957 0.9888 0.0349 0.9883 0.9893
0.0 144.0 69408 0.9956 0.9895 0.0357 0.9883 0.9908
0.0 145.0 69890 0.9955 0.9899 0.0361 0.9883 0.9915
0.0001 146.0 70372 0.9956 0.9902 0.0350 0.9894 0.9911
0.0001 147.0 70854 0.9956 0.9906 0.0354 0.9894 0.9918
0.0 148.0 71336 0.9956 0.9902 0.0351 0.9894 0.9911
0.0 149.0 71818 0.9956 0.9902 0.0352 0.9894 0.9911
0.0 150.0 72300 0.9956 0.9902 0.0352 0.9894 0.9911

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Safetensors
Model size
71.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for opengl106/roberta-small-hangul-2-hanja

Base model

klue/roberta-small
Finetuned
(10)
this model