|
--- |
|
base_model: sentence-transformers/paraphrase-xlm-r-multilingual-v1 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:38739 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: '''Turks ve Caicos Adaları''ndaki Afrikalıların nüfusu nedir?' |
|
sentences: |
|
- "CREATE TABLEethnicGroup (\n Country TEXT,\n Name TEXT PRIMARY KEY,\n \ |
|
\ Percentage REAL,\n FOREIGN KEY (Country) REFERENCES country(None)\n);" |
|
- "CREATE TABLEPatient (\n ID INTEGER PRIMARY KEY,\n SEX TEXT,\n Birthday\ |
|
\ DATE,\n Description DATE,\n First Date DATE,\n Admission TEXT,\n \ |
|
\ Diagnosis TEXT\n);" |
|
- "CREATE TABLEwrites (\n paperId INTEGER PRIMARY KEY,\n authorId INTEGER,\n\ |
|
\ FOREIGN KEY (authorId) REFERENCES author(authorId),\n FOREIGN KEY (paperId)\ |
|
\ REFERENCES paper(paperId)\n);" |
|
- source_sentence: Teksas'ın başkenti nedir |
|
sentences: |
|
- "CREATE TABLEprofessor (\n EMP_NUM INT,\n DEPT_CODE varchar(10),\n PROF_OFFICE\ |
|
\ varchar(50),\n PROF_EXTENSION varchar(4),\n PROF_HIGH_DEGREE varchar(5),\n\ |
|
\ FOREIGN KEY (DEPT_CODE) REFERENCES DEPARTMENT(DEPT_CODE),\n FOREIGN KEY\ |
|
\ (EMP_NUM) REFERENCES EMPLOYEE(EMP_NUM)\n);" |
|
- "CREATE TABLEBusiness_Hours (\n business_id INTEGER PRIMARY KEY,\n day_id\ |
|
\ INTEGER,\n opening_time TEXT,\n closing_time TEXT,\n FOREIGN KEY (day_id)\ |
|
\ REFERENCES Days(None),\n FOREIGN KEY (business_id) REFERENCES Business(None)\n\ |
|
);" |
|
- "CREATE TABLEstate (\n state_name TEXT PRIMARY KEY,\n population INTEGER,\n\ |
|
\ area double,\n country_name varchar(3),\n capital TEXT,\n density\ |
|
\ double\n);" |
|
- source_sentence: '''Mad Max: Fury Road'' filminde çalışan 10 ekibin işlerinin yanı |
|
sıra listeleyin.' |
|
sentences: |
|
- "CREATE TABLEmovie (\n movie_id INTEGER PRIMARY KEY,\n title TEXT,\n \ |
|
\ budget INTEGER,\n homepage TEXT,\n overview TEXT,\n popularity REAL,\n\ |
|
\ release_date DATE,\n revenue INTEGER,\n runtime INTEGER,\n movie_status\ |
|
\ TEXT,\n tagline TEXT,\n vote_average REAL,\n vote_count INTEGER\n);" |
|
- "CREATE TABLEstudent (\n STU_NUM INT PRIMARY KEY,\n STU_LNAME varchar(15),\n\ |
|
\ STU_FNAME varchar(15),\n STU_INIT varchar(1),\n STU_DOB datetime,\n\ |
|
\ STU_HRS INT,\n STU_CLASS varchar(2),\n STU_GPA float(8),\n STU_TRANSFER\ |
|
\ numeric,\n DEPT_CODE varchar(18),\n STU_PHONE varchar(4),\n PROF_NUM\ |
|
\ INT,\n FOREIGN KEY (DEPT_CODE) REFERENCES DEPARTMENT(DEPT_CODE)\n);" |
|
- "CREATE TABLEFinancial_transactions (\n transaction_id INTEGER,\n account_id\ |
|
\ INTEGER,\n invoice_number INTEGER,\n transaction_type VARCHAR(15),\n \ |
|
\ transaction_date DATETIME,\n transaction_amount DECIMAL(19,4),\n transaction_comment\ |
|
\ VARCHAR(255),\n other_transaction_details VARCHAR(255),\n FOREIGN KEY\ |
|
\ (account_id) REFERENCES Accounts(account_id),\n FOREIGN KEY (invoice_number)\ |
|
\ REFERENCES Invoices(invoice_number)\n);" |
|
- source_sentence: Tüm müşterilerin ortalama yaşının %80'inden daha büyük yaştaki |
|
müşterilerin gelirlerini ve sakin sayısını listeler misiniz? |
|
sentences: |
|
- "CREATE TABLECustomers (\n ID INTEGER PRIMARY KEY,\n SEX TEXT,\n MARITAL_STATUS\ |
|
\ TEXT,\n GEOID INTEGER,\n EDUCATIONNUM INTEGER,\n OCCUPATION TEXT,\n\ |
|
\ age INTEGER,\n FOREIGN KEY (GEOID) REFERENCES Demog(None)\n);" |
|
- "CREATE TABLEauthors (\n authID INTEGER PRIMARY KEY,\n lname TEXT,\n \ |
|
\ fname TEXT\n);" |
|
- "CREATE TABLEcoaches (\n coachID TEXT PRIMARY KEY,\n year INTEGER,\n \ |
|
\ tmID TEXT,\n lgID TEXT,\n stint INTEGER,\n won INTEGER,\n lost INTEGER,\n\ |
|
\ post_wins INTEGER,\n post_losses INTEGER,\n FOREIGN KEY (tmID) REFERENCES\ |
|
\ teams(tmID),\n FOREIGN KEY (year) REFERENCES teams(year)\n);" |
|
- source_sentence: Eleanor Hunt'a ait kaç tane kiralama kimliği var? |
|
sentences: |
|
- "CREATE TABLEsinger (\n Singer_ID INT PRIMARY KEY,\n Name TEXT,\n Country\ |
|
\ TEXT,\n Song_Name TEXT,\n Song_release_year TEXT,\n Age INT,\n Is_male\ |
|
\ bool\n);" |
|
- "CREATE TABLEdistrict (\n District_ID INT PRIMARY KEY,\n District_name TEXT,\n\ |
|
\ Headquartered_City TEXT,\n City_Population REAL,\n City_Area REAL\n\ |
|
);" |
|
- "CREATE TABLEcustomer (\n customer_id INTEGER PRIMARY KEY,\n store_id INTEGER,\n\ |
|
\ first_name TEXT,\n last_name TEXT,\n email TEXT,\n address_id INTEGER,\n\ |
|
\ active INTEGER,\n create_date DATETIME,\n last_update DATETIME,\n \ |
|
\ FOREIGN KEY (address_id) REFERENCES address(None),\n FOREIGN KEY (store_id)\ |
|
\ REFERENCES store(None)\n);" |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-xlm-r-multilingual-v1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1) <!-- at revision 9df88080e03c09181139a92fdf0423f84a79852d --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("nypgd/fine-tuned-sentence-transformer_last") |
|
# Run inference |
|
sentences = [ |
|
"Eleanor Hunt'a ait kaç tane kiralama kimliği var?", |
|
'CREATE TABLEcustomer (\n customer_id INTEGER PRIMARY KEY,\n store_id INTEGER,\n first_name TEXT,\n last_name TEXT,\n email TEXT,\n address_id INTEGER,\n active INTEGER,\n create_date DATETIME,\n last_update DATETIME,\n FOREIGN KEY (address_id) REFERENCES address(None),\n FOREIGN KEY (store_id) REFERENCES store(None)\n);', |
|
'CREATE TABLEdistrict (\n District_ID INT PRIMARY KEY,\n District_name TEXT,\n Headquartered_City TEXT,\n City_Population REAL,\n City_Area REAL\n);', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 38,739 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 19.22 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 73.6 tokens</li><li>max: 128 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>en büyük alana sahip eyaleti belirtin</code> | <code>CREATE TABLEstate (<br> state_name TEXT PRIMARY KEY,<br> population INTEGER,<br> area double,<br> country_name varchar(3),<br> capital TEXT,<br> density double<br>);</code> | |
|
| <code>Law & Order'ın hangi bölümleri Primetime Emmy Ödülleri'ne aday gösterildi?</code> | <code>CREATE TABLEAward (<br> award_id INTEGER PRIMARY KEY,<br> organization TEXT,<br> year INTEGER,<br> award_category TEXT,<br> award TEXT,<br> series TEXT,<br> episode_id TEXT,<br> person_id TEXT,<br> role TEXT,<br> result TEXT,<br> FOREIGN KEY (person_id) REFERENCES Person(person_id),<br> FOREIGN KEY (episode_id) REFERENCES Episode(episode_id)<br>);</code> | |
|
| <code>Albümü "Universal Music Group" etiketi altında yer alan tüm şarkıların isimleri nelerdir?</code> | <code>CREATE TABLEtracklists (<br> AlbumId INTEGER PRIMARY KEY,<br> Position INTEGER,<br> SongId INTEGER,<br> FOREIGN KEY (AlbumId) REFERENCES Albums(AId),<br> FOREIGN KEY (SongId) REFERENCES Songs(SongId)<br>);</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 1 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:----:|:-------------:| |
|
| 0.2064 | 500 | 0.5621 | |
|
| 0.4129 | 1000 | 0.295 | |
|
| 0.6193 | 1500 | 0.2644 | |
|
| 0.8258 | 2000 | 0.2035 | |
|
| 1.0322 | 2500 | 0.184 | |
|
| 1.2386 | 3000 | 0.1237 | |
|
| 1.4451 | 3500 | 0.1008 | |
|
| 1.6515 | 4000 | 0.0984 | |
|
| 1.8580 | 4500 | 0.0841 | |
|
| 0.2064 | 500 | 0.1214 | |
|
| 0.4129 | 1000 | 0.1139 | |
|
| 0.6193 | 1500 | 0.11 | |
|
| 0.8258 | 2000 | 0.0999 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |