nypgd commited on
Commit
b91fddb
·
verified ·
1 Parent(s): 910adbb

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-xlm-r-multilingual-v1
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:38739
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: '''Turks ve Caicos Adaları''ndaki Afrikalıların nüfusu nedir?'
16
+ sentences:
17
+ - "CREATE TABLEethnicGroup (\n Country TEXT,\n Name TEXT PRIMARY KEY,\n \
18
+ \ Percentage REAL,\n FOREIGN KEY (Country) REFERENCES country(None)\n);"
19
+ - "CREATE TABLEPatient (\n ID INTEGER PRIMARY KEY,\n SEX TEXT,\n Birthday\
20
+ \ DATE,\n Description DATE,\n First Date DATE,\n Admission TEXT,\n \
21
+ \ Diagnosis TEXT\n);"
22
+ - "CREATE TABLEwrites (\n paperId INTEGER PRIMARY KEY,\n authorId INTEGER,\n\
23
+ \ FOREIGN KEY (authorId) REFERENCES author(authorId),\n FOREIGN KEY (paperId)\
24
+ \ REFERENCES paper(paperId)\n);"
25
+ - source_sentence: Teksas'ın başkenti nedir
26
+ sentences:
27
+ - "CREATE TABLEprofessor (\n EMP_NUM INT,\n DEPT_CODE varchar(10),\n PROF_OFFICE\
28
+ \ varchar(50),\n PROF_EXTENSION varchar(4),\n PROF_HIGH_DEGREE varchar(5),\n\
29
+ \ FOREIGN KEY (DEPT_CODE) REFERENCES DEPARTMENT(DEPT_CODE),\n FOREIGN KEY\
30
+ \ (EMP_NUM) REFERENCES EMPLOYEE(EMP_NUM)\n);"
31
+ - "CREATE TABLEBusiness_Hours (\n business_id INTEGER PRIMARY KEY,\n day_id\
32
+ \ INTEGER,\n opening_time TEXT,\n closing_time TEXT,\n FOREIGN KEY (day_id)\
33
+ \ REFERENCES Days(None),\n FOREIGN KEY (business_id) REFERENCES Business(None)\n\
34
+ );"
35
+ - "CREATE TABLEstate (\n state_name TEXT PRIMARY KEY,\n population INTEGER,\n\
36
+ \ area double,\n country_name varchar(3),\n capital TEXT,\n density\
37
+ \ double\n);"
38
+ - source_sentence: '''Mad Max: Fury Road'' filminde çalışan 10 ekibin işlerinin yanı
39
+ sıra listeleyin.'
40
+ sentences:
41
+ - "CREATE TABLEmovie (\n movie_id INTEGER PRIMARY KEY,\n title TEXT,\n \
42
+ \ budget INTEGER,\n homepage TEXT,\n overview TEXT,\n popularity REAL,\n\
43
+ \ release_date DATE,\n revenue INTEGER,\n runtime INTEGER,\n movie_status\
44
+ \ TEXT,\n tagline TEXT,\n vote_average REAL,\n vote_count INTEGER\n);"
45
+ - "CREATE TABLEstudent (\n STU_NUM INT PRIMARY KEY,\n STU_LNAME varchar(15),\n\
46
+ \ STU_FNAME varchar(15),\n STU_INIT varchar(1),\n STU_DOB datetime,\n\
47
+ \ STU_HRS INT,\n STU_CLASS varchar(2),\n STU_GPA float(8),\n STU_TRANSFER\
48
+ \ numeric,\n DEPT_CODE varchar(18),\n STU_PHONE varchar(4),\n PROF_NUM\
49
+ \ INT,\n FOREIGN KEY (DEPT_CODE) REFERENCES DEPARTMENT(DEPT_CODE)\n);"
50
+ - "CREATE TABLEFinancial_transactions (\n transaction_id INTEGER,\n account_id\
51
+ \ INTEGER,\n invoice_number INTEGER,\n transaction_type VARCHAR(15),\n \
52
+ \ transaction_date DATETIME,\n transaction_amount DECIMAL(19,4),\n transaction_comment\
53
+ \ VARCHAR(255),\n other_transaction_details VARCHAR(255),\n FOREIGN KEY\
54
+ \ (account_id) REFERENCES Accounts(account_id),\n FOREIGN KEY (invoice_number)\
55
+ \ REFERENCES Invoices(invoice_number)\n);"
56
+ - source_sentence: Tüm müşterilerin ortalama yaşının %80'inden daha büyük yaştaki
57
+ müşterilerin gelirlerini ve sakin sayısını listeler misiniz?
58
+ sentences:
59
+ - "CREATE TABLECustomers (\n ID INTEGER PRIMARY KEY,\n SEX TEXT,\n MARITAL_STATUS\
60
+ \ TEXT,\n GEOID INTEGER,\n EDUCATIONNUM INTEGER,\n OCCUPATION TEXT,\n\
61
+ \ age INTEGER,\n FOREIGN KEY (GEOID) REFERENCES Demog(None)\n);"
62
+ - "CREATE TABLEauthors (\n authID INTEGER PRIMARY KEY,\n lname TEXT,\n \
63
+ \ fname TEXT\n);"
64
+ - "CREATE TABLEcoaches (\n coachID TEXT PRIMARY KEY,\n year INTEGER,\n \
65
+ \ tmID TEXT,\n lgID TEXT,\n stint INTEGER,\n won INTEGER,\n lost INTEGER,\n\
66
+ \ post_wins INTEGER,\n post_losses INTEGER,\n FOREIGN KEY (tmID) REFERENCES\
67
+ \ teams(tmID),\n FOREIGN KEY (year) REFERENCES teams(year)\n);"
68
+ - source_sentence: Eleanor Hunt'a ait kaç tane kiralama kimliği var?
69
+ sentences:
70
+ - "CREATE TABLEsinger (\n Singer_ID INT PRIMARY KEY,\n Name TEXT,\n Country\
71
+ \ TEXT,\n Song_Name TEXT,\n Song_release_year TEXT,\n Age INT,\n Is_male\
72
+ \ bool\n);"
73
+ - "CREATE TABLEdistrict (\n District_ID INT PRIMARY KEY,\n District_name TEXT,\n\
74
+ \ Headquartered_City TEXT,\n City_Population REAL,\n City_Area REAL\n\
75
+ );"
76
+ - "CREATE TABLEcustomer (\n customer_id INTEGER PRIMARY KEY,\n store_id INTEGER,\n\
77
+ \ first_name TEXT,\n last_name TEXT,\n email TEXT,\n address_id INTEGER,\n\
78
+ \ active INTEGER,\n create_date DATETIME,\n last_update DATETIME,\n \
79
+ \ FOREIGN KEY (address_id) REFERENCES address(None),\n FOREIGN KEY (store_id)\
80
+ \ REFERENCES store(None)\n);"
81
+ ---
82
+
83
+ # SentenceTransformer based on sentence-transformers/paraphrase-xlm-r-multilingual-v1
84
+
85
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** Sentence Transformer
91
+ - **Base model:** [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1) <!-- at revision 9df88080e03c09181139a92fdf0423f84a79852d -->
92
+ - **Maximum Sequence Length:** 128 tokens
93
+ - **Output Dimensionality:** 768 tokens
94
+ - **Similarity Function:** Cosine Similarity
95
+ <!-- - **Training Dataset:** Unknown -->
96
+ <!-- - **Language:** Unknown -->
97
+ <!-- - **License:** Unknown -->
98
+
99
+ ### Model Sources
100
+
101
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
102
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
103
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
104
+
105
+ ### Full Model Architecture
106
+
107
+ ```
108
+ SentenceTransformer(
109
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
110
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
111
+ )
112
+ ```
113
+
114
+ ## Usage
115
+
116
+ ### Direct Usage (Sentence Transformers)
117
+
118
+ First install the Sentence Transformers library:
119
+
120
+ ```bash
121
+ pip install -U sentence-transformers
122
+ ```
123
+
124
+ Then you can load this model and run inference.
125
+ ```python
126
+ from sentence_transformers import SentenceTransformer
127
+
128
+ # Download from the 🤗 Hub
129
+ model = SentenceTransformer("nypgd/fine-tuned-sentence-transformer_last")
130
+ # Run inference
131
+ sentences = [
132
+ "Eleanor Hunt'a ait kaç tane kiralama kimliği var?",
133
+ 'CREATE TABLEcustomer (\n customer_id INTEGER PRIMARY KEY,\n store_id INTEGER,\n first_name TEXT,\n last_name TEXT,\n email TEXT,\n address_id INTEGER,\n active INTEGER,\n create_date DATETIME,\n last_update DATETIME,\n FOREIGN KEY (address_id) REFERENCES address(None),\n FOREIGN KEY (store_id) REFERENCES store(None)\n);',
134
+ 'CREATE TABLEdistrict (\n District_ID INT PRIMARY KEY,\n District_name TEXT,\n Headquartered_City TEXT,\n City_Population REAL,\n City_Area REAL\n);',
135
+ ]
136
+ embeddings = model.encode(sentences)
137
+ print(embeddings.shape)
138
+ # [3, 768]
139
+
140
+ # Get the similarity scores for the embeddings
141
+ similarities = model.similarity(embeddings, embeddings)
142
+ print(similarities.shape)
143
+ # [3, 3]
144
+ ```
145
+
146
+ <!--
147
+ ### Direct Usage (Transformers)
148
+
149
+ <details><summary>Click to see the direct usage in Transformers</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Downstream Usage (Sentence Transformers)
156
+
157
+ You can finetune this model on your own dataset.
158
+
159
+ <details><summary>Click to expand</summary>
160
+
161
+ </details>
162
+ -->
163
+
164
+ <!--
165
+ ### Out-of-Scope Use
166
+
167
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
168
+ -->
169
+
170
+ <!--
171
+ ## Bias, Risks and Limitations
172
+
173
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
174
+ -->
175
+
176
+ <!--
177
+ ### Recommendations
178
+
179
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
180
+ -->
181
+
182
+ ## Training Details
183
+
184
+ ### Training Dataset
185
+
186
+ #### Unnamed Dataset
187
+
188
+
189
+ * Size: 38,739 training samples
190
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
191
+ * Approximate statistics based on the first 1000 samples:
192
+ | | sentence_0 | sentence_1 |
193
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
194
+ | type | string | string |
195
+ | details | <ul><li>min: 7 tokens</li><li>mean: 19.22 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 73.6 tokens</li><li>max: 128 tokens</li></ul> |
196
+ * Samples:
197
+ | sentence_0 | sentence_1 |
198
+ |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
199
+ | <code>en büyük alana sahip eyaleti belirtin</code> | <code>CREATE TABLEstate (<br> state_name TEXT PRIMARY KEY,<br> population INTEGER,<br> area double,<br> country_name varchar(3),<br> capital TEXT,<br> density double<br>);</code> |
200
+ | <code>Law & Order'ın hangi bölümleri Primetime Emmy Ödülleri'ne aday gösterildi?</code> | <code>CREATE TABLEAward (<br> award_id INTEGER PRIMARY KEY,<br> organization TEXT,<br> year INTEGER,<br> award_category TEXT,<br> award TEXT,<br> series TEXT,<br> episode_id TEXT,<br> person_id TEXT,<br> role TEXT,<br> result TEXT,<br> FOREIGN KEY (person_id) REFERENCES Person(person_id),<br> FOREIGN KEY (episode_id) REFERENCES Episode(episode_id)<br>);</code> |
201
+ | <code>Albümü "Universal Music Group" etiketi altında yer alan tüm şarkıların isimleri nelerdir?</code> | <code>CREATE TABLEtracklists (<br> AlbumId INTEGER PRIMARY KEY,<br> Position INTEGER,<br> SongId INTEGER,<br> FOREIGN KEY (AlbumId) REFERENCES Albums(AId),<br> FOREIGN KEY (SongId) REFERENCES Songs(SongId)<br>);</code> |
202
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
203
+ ```json
204
+ {
205
+ "scale": 20.0,
206
+ "similarity_fct": "cos_sim"
207
+ }
208
+ ```
209
+
210
+ ### Training Hyperparameters
211
+ #### Non-Default Hyperparameters
212
+
213
+ - `per_device_train_batch_size`: 16
214
+ - `per_device_eval_batch_size`: 16
215
+ - `num_train_epochs`: 1
216
+ - `multi_dataset_batch_sampler`: round_robin
217
+
218
+ #### All Hyperparameters
219
+ <details><summary>Click to expand</summary>
220
+
221
+ - `overwrite_output_dir`: False
222
+ - `do_predict`: False
223
+ - `eval_strategy`: no
224
+ - `prediction_loss_only`: True
225
+ - `per_device_train_batch_size`: 16
226
+ - `per_device_eval_batch_size`: 16
227
+ - `per_gpu_train_batch_size`: None
228
+ - `per_gpu_eval_batch_size`: None
229
+ - `gradient_accumulation_steps`: 1
230
+ - `eval_accumulation_steps`: None
231
+ - `learning_rate`: 5e-05
232
+ - `weight_decay`: 0.0
233
+ - `adam_beta1`: 0.9
234
+ - `adam_beta2`: 0.999
235
+ - `adam_epsilon`: 1e-08
236
+ - `max_grad_norm`: 1
237
+ - `num_train_epochs`: 1
238
+ - `max_steps`: -1
239
+ - `lr_scheduler_type`: linear
240
+ - `lr_scheduler_kwargs`: {}
241
+ - `warmup_ratio`: 0.0
242
+ - `warmup_steps`: 0
243
+ - `log_level`: passive
244
+ - `log_level_replica`: warning
245
+ - `log_on_each_node`: True
246
+ - `logging_nan_inf_filter`: True
247
+ - `save_safetensors`: True
248
+ - `save_on_each_node`: False
249
+ - `save_only_model`: False
250
+ - `restore_callback_states_from_checkpoint`: False
251
+ - `no_cuda`: False
252
+ - `use_cpu`: False
253
+ - `use_mps_device`: False
254
+ - `seed`: 42
255
+ - `data_seed`: None
256
+ - `jit_mode_eval`: False
257
+ - `use_ipex`: False
258
+ - `bf16`: False
259
+ - `fp16`: False
260
+ - `fp16_opt_level`: O1
261
+ - `half_precision_backend`: auto
262
+ - `bf16_full_eval`: False
263
+ - `fp16_full_eval`: False
264
+ - `tf32`: None
265
+ - `local_rank`: 0
266
+ - `ddp_backend`: None
267
+ - `tpu_num_cores`: None
268
+ - `tpu_metrics_debug`: False
269
+ - `debug`: []
270
+ - `dataloader_drop_last`: False
271
+ - `dataloader_num_workers`: 0
272
+ - `dataloader_prefetch_factor`: None
273
+ - `past_index`: -1
274
+ - `disable_tqdm`: False
275
+ - `remove_unused_columns`: True
276
+ - `label_names`: None
277
+ - `load_best_model_at_end`: False
278
+ - `ignore_data_skip`: False
279
+ - `fsdp`: []
280
+ - `fsdp_min_num_params`: 0
281
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
282
+ - `fsdp_transformer_layer_cls_to_wrap`: None
283
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
284
+ - `deepspeed`: None
285
+ - `label_smoothing_factor`: 0.0
286
+ - `optim`: adamw_torch
287
+ - `optim_args`: None
288
+ - `adafactor`: False
289
+ - `group_by_length`: False
290
+ - `length_column_name`: length
291
+ - `ddp_find_unused_parameters`: None
292
+ - `ddp_bucket_cap_mb`: None
293
+ - `ddp_broadcast_buffers`: False
294
+ - `dataloader_pin_memory`: True
295
+ - `dataloader_persistent_workers`: False
296
+ - `skip_memory_metrics`: True
297
+ - `use_legacy_prediction_loop`: False
298
+ - `push_to_hub`: False
299
+ - `resume_from_checkpoint`: None
300
+ - `hub_model_id`: None
301
+ - `hub_strategy`: every_save
302
+ - `hub_private_repo`: False
303
+ - `hub_always_push`: False
304
+ - `gradient_checkpointing`: False
305
+ - `gradient_checkpointing_kwargs`: None
306
+ - `include_inputs_for_metrics`: False
307
+ - `eval_do_concat_batches`: True
308
+ - `fp16_backend`: auto
309
+ - `push_to_hub_model_id`: None
310
+ - `push_to_hub_organization`: None
311
+ - `mp_parameters`:
312
+ - `auto_find_batch_size`: False
313
+ - `full_determinism`: False
314
+ - `torchdynamo`: None
315
+ - `ray_scope`: last
316
+ - `ddp_timeout`: 1800
317
+ - `torch_compile`: False
318
+ - `torch_compile_backend`: None
319
+ - `torch_compile_mode`: None
320
+ - `dispatch_batches`: None
321
+ - `split_batches`: None
322
+ - `include_tokens_per_second`: False
323
+ - `include_num_input_tokens_seen`: False
324
+ - `neftune_noise_alpha`: None
325
+ - `optim_target_modules`: None
326
+ - `batch_eval_metrics`: False
327
+ - `eval_on_start`: False
328
+ - `batch_sampler`: batch_sampler
329
+ - `multi_dataset_batch_sampler`: round_robin
330
+
331
+ </details>
332
+
333
+ ### Training Logs
334
+ | Epoch | Step | Training Loss |
335
+ |:------:|:----:|:-------------:|
336
+ | 0.2064 | 500 | 0.5621 |
337
+ | 0.4129 | 1000 | 0.295 |
338
+ | 0.6193 | 1500 | 0.2644 |
339
+ | 0.8258 | 2000 | 0.2035 |
340
+ | 1.0322 | 2500 | 0.184 |
341
+ | 1.2386 | 3000 | 0.1237 |
342
+ | 1.4451 | 3500 | 0.1008 |
343
+ | 1.6515 | 4000 | 0.0984 |
344
+ | 1.8580 | 4500 | 0.0841 |
345
+ | 0.2064 | 500 | 0.1214 |
346
+ | 0.4129 | 1000 | 0.1139 |
347
+ | 0.6193 | 1500 | 0.11 |
348
+ | 0.8258 | 2000 | 0.0999 |
349
+
350
+
351
+ ### Framework Versions
352
+ - Python: 3.10.12
353
+ - Sentence Transformers: 3.0.1
354
+ - Transformers: 4.42.4
355
+ - PyTorch: 2.4.0+cu121
356
+ - Accelerate: 0.32.1
357
+ - Datasets: 2.21.0
358
+ - Tokenizers: 0.19.1
359
+
360
+ ## Citation
361
+
362
+ ### BibTeX
363
+
364
+ #### Sentence Transformers
365
+ ```bibtex
366
+ @inproceedings{reimers-2019-sentence-bert,
367
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
368
+ author = "Reimers, Nils and Gurevych, Iryna",
369
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
370
+ month = "11",
371
+ year = "2019",
372
+ publisher = "Association for Computational Linguistics",
373
+ url = "https://arxiv.org/abs/1908.10084",
374
+ }
375
+ ```
376
+
377
+ #### MultipleNegativesRankingLoss
378
+ ```bibtex
379
+ @misc{henderson2017efficient,
380
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
381
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
382
+ year={2017},
383
+ eprint={1705.00652},
384
+ archivePrefix={arXiv},
385
+ primaryClass={cs.CL}
386
+ }
387
+ ```
388
+
389
+ <!--
390
+ ## Glossary
391
+
392
+ *Clearly define terms in order to be accessible across audiences.*
393
+ -->
394
+
395
+ <!--
396
+ ## Model Card Authors
397
+
398
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
399
+ -->
400
+
401
+ <!--
402
+ ## Model Card Contact
403
+
404
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
405
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-xlm-r-multilingual-v1",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.42.4",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e76705842847da7eec5bafc1b699fa2639dba8a7000f88322265eed632bffe5
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c2ccb33b55c4d157419a2105d6e033f7514c2baa6306471c56b86ab02787613
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 128,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }