metadata
library_name: transformers
license: mit
base_model: DeepMount00/Italian-ModernBERT-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: modernbert-italian-finetuned-ner
results: []
datasets:
- tner/wikiann
language:
- it
pipeline_tag: token-classification
modernbert-italian-finetuned-ner
This model is a fine-tuned version of DeepMount00/Italian-ModernBERT-base on tner/wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.0422
- Precision: 0.9339
- Recall: 0.9452
- F1: 0.9395
- Accuracy: 0.9909
Model description
Token classification for italian language experiment, NER.
Example
from transformers import pipeline
ner_pipeline = pipeline("ner", model="nickprock/modernbert-italian-finetuned-ner", aggregation_strategy="simple")
text = "La sede storica della Olivetti è ad Ivrea"
output = ner_pipeline(text)
Intended uses & limitations
The model can be used on token classification, in particular NER. It is fine tuned on italian language.
Training and evaluation data
The dataset used is wikiann
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0277 | 1.0 | 11050 | 0.0324 | 0.9233 | 0.9362 | 0.9297 | 0.9899 |
0.0139 | 2.0 | 22100 | 0.0341 | 0.9327 | 0.9428 | 0.9377 | 0.9907 |
0.0052 | 3.0 | 33150 | 0.0422 | 0.9339 | 0.9452 | 0.9395 | 0.9909 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0