File size: 2,441 Bytes
0b2e6b7
 
d012085
0b2e6b7
 
 
 
 
 
 
 
 
 
 
032a707
 
 
 
 
0b2e6b7
 
 
 
 
 
 
36a5a02
0b2e6b7
 
 
 
 
 
 
 
 
d012085
 
 
 
 
 
 
 
 
 
0b2e6b7
 
 
d012085
0b2e6b7
 
 
d012085
 
0b2e6b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
032a707
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: mit
base_model: DeepMount00/Italian-ModernBERT-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: modernbert-italian-finetuned-ner
  results: []
datasets:
- tner/wikiann
language:
- it
pipeline_tag: token-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# modernbert-italian-finetuned-ner

This model is a fine-tuned version of [DeepMount00/Italian-ModernBERT-base](https://huggingface.co/DeepMount00/Italian-ModernBERT-base) on [tner/wikiann](https://huggingface.co/datasets/tner/wikiann) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0422
- Precision: 0.9339
- Recall: 0.9452
- F1: 0.9395
- Accuracy: 0.9909

## Model description

Token classification for italian language experiment, NER.

### Example

```python
from transformers import pipeline
ner_pipeline = pipeline("ner", model="nickprock/modernbert-italian-finetuned-ner", aggregation_strategy="simple")
text = "La sede storica della Olivetti è ad Ivrea"
output = ner_pipeline(text)
```

## Intended uses & limitations

The model can be used on token classification, in particular NER. It is fine tuned on italian language.

## Training and evaluation data

The dataset used is [wikiann](https://huggingface.co/datasets/tner/wikiann)


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0277        | 1.0   | 11050 | 0.0324          | 0.9233    | 0.9362 | 0.9297 | 0.9899   |
| 0.0139        | 2.0   | 22100 | 0.0341          | 0.9327    | 0.9428 | 0.9377 | 0.9907   |
| 0.0052        | 3.0   | 33150 | 0.0422          | 0.9339    | 0.9452 | 0.9395 | 0.9909   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0