metadata
language: bn
tags:
- collaborative
- bengali
- NER
license: apache-2.0
datasets: xtreme
metrics:
- Loss
- Accuracy
- Precision
- Recall
sahajBERT Named Entity Recognition
Model description
sahajBERT fine-tuned for NER using the bengali split of WikiANN .
Named Entities predicted by the model:
Label id | Label |
---|---|
0 | O |
1 | B-PER |
2 | I-PER |
3 | B-ORG |
4 | I-ORG |
5 | B-LOC |
6 | I-LOC |
Intended uses & limitations
How to use
You can use this model directly with a pipeline for token classification:
from transformers import AlbertForTokenClassification, TokenClassificationPipeline, PreTrainedTokenizerFast
# Initialize tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT-NER")
# Initialize model
model = AlbertForTokenClassification.from_pretrained("neuropark/sahajBERT-NER")
# Initialize pipeline
pipeline = TokenClassificationPipeline(tokenizer=tokenizer, model=model)
raw_text = "এই ইউনিয়নে ৩ টি মৌজা ও ১০ টি গ্রাম আছে ।" # Change me
output = pipeline(raw_text)
Limitations and bias
WIP
Training data
The model was initialized with pre-trained weights of sahajBERT at step 2489 and trained on the bengali split of WikiANN
Training procedure
Coming soon!
Eval results
accuracy: 0.9291424418604651
f1: 0.8475143403441683
loss: 0.2975200116634369
precision: 0.8254189944134078
recall: 0.8708251473477406
BibTeX entry and citation info
Coming soon!