Upload
commited on
Commit
·
bccc26c
1
Parent(s):
2e53f09
Step 2489
Browse files- README.md +78 -26
- config.json +3 -3
- pytorch_model.bin +2 -2
README.md
CHANGED
@@ -1,43 +1,95 @@
|
|
|
|
1 |
---
|
2 |
-
tags: autonlp
|
3 |
language: bn
|
4 |
-
|
5 |
-
-
|
6 |
-
|
7 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
|
13 |
-
- Model ID: 1341171
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
- Accuracy: 0.9730101212045483
|
19 |
-
- Precision: 0.0
|
20 |
-
- Recall: 0.0
|
21 |
-
- F1: 0.0
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
```
|
34 |
-
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
tokenizer = AutoTokenizer.from_pretrained("albertvillanova/autonlp-baselines-wikiann-entity_extraction-1341171", use_auth_token=True)
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
```
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
---
|
|
|
3 |
language: bn
|
4 |
+
tags:
|
5 |
+
- collaborative
|
6 |
+
- bengali
|
7 |
+
- NER
|
8 |
+
license: apache-2.0
|
9 |
+
datasets: xtreme
|
10 |
+
metrics:
|
11 |
+
- Loss
|
12 |
+
- Accuracy
|
13 |
+
- Precision
|
14 |
+
- Recall
|
15 |
---
|
16 |
|
17 |
+
# sahajBERT Named Entity Recognition
|
18 |
|
19 |
+
## Model description
|
|
|
20 |
|
21 |
+
[sahajBERT](https://huggingface.co/neuropark/sahajBERT-NER) fine-tuned for NER using the bengali split of [WikiANN ](https://huggingface.co/datasets/wikiann).
|
22 |
|
23 |
+
Named Entities predicted by the model:
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
| Label id | Label |
|
26 |
+
|:--------:|:----:|
|
27 |
+
|0 |O|
|
28 |
+
|1 |B-PER|
|
29 |
+
|2 |I-PER|
|
30 |
+
|3 |B-ORG|
|
31 |
+
|4 |I-ORG|
|
32 |
+
|5 |B-LOC|
|
33 |
+
|6 |I-LOC|
|
34 |
|
35 |
+
## Intended uses & limitations
|
36 |
|
37 |
+
#### How to use
|
38 |
+
|
39 |
+
You can use this model directly with a pipeline for token classification:
|
40 |
+
```python
|
41 |
+
from transformers import AlbertForTokenClassification, TokenClassificationPipeline, PreTrainedTokenizerFast
|
42 |
+
|
43 |
+
# Initialize tokenizer
|
44 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT-NER")
|
45 |
|
46 |
+
# Initialize model
|
47 |
+
model = AlbertForTokenClassification.from_pretrained("neuropark/sahajBERT-NER")
|
48 |
|
49 |
+
# Initialize pipeline
|
50 |
+
pipeline = TokenClassificationPipeline(tokenizer=tokenizer, model=model)
|
51 |
+
|
52 |
+
raw_text = "এই ইউনিয়নে ৩ টি মৌজা ও ১০ টি গ্রাম আছে ।" # Change me
|
53 |
+
output = pipeline(raw_text)
|
54 |
```
|
|
|
55 |
|
56 |
+
#### Limitations and bias
|
57 |
+
|
58 |
+
<!-- Provide examples of latent issues and potential remediations. -->
|
59 |
+
WIP
|
60 |
+
|
61 |
+
## Training data
|
62 |
+
|
63 |
+
The model was initialized with pre-trained weights of [sahajBERT](https://huggingface.co/neuropark/sahajBERT-NER) at step 2489 and trained on the bengali split of [WikiANN ](https://huggingface.co/datasets/wikiann)
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
Coming soon!
|
68 |
+
<!-- ```bibtex
|
69 |
+
@inproceedings{...,
|
70 |
+
year={2020}
|
71 |
+
}
|
72 |
+
``` -->
|
73 |
+
|
74 |
+
## Eval results
|
75 |
+
|
76 |
+
accuracy: 0.9291424418604651
|
77 |
+
|
78 |
+
f1: 0.8475143403441683
|
79 |
+
|
80 |
+
loss: 0.2975200116634369
|
81 |
+
|
82 |
+
precision: 0.8254189944134078
|
83 |
+
|
84 |
+
recall: 0.8708251473477406
|
85 |
+
|
86 |
|
|
|
87 |
|
88 |
+
### BibTeX entry and citation info
|
89 |
|
90 |
+
Coming soon!
|
91 |
+
<!-- ```bibtex
|
92 |
+
@inproceedings{...,
|
93 |
+
year={2020}
|
94 |
+
}
|
95 |
+
``` -->
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"_num_labels": 7,
|
4 |
"architectures": [
|
5 |
"AlbertForTokenClassification"
|
@@ -36,7 +36,7 @@
|
|
36 |
"6": 6
|
37 |
},
|
38 |
"layer_norm_eps": 1e-12,
|
39 |
-
"max_length":
|
40 |
"max_position_embeddings": 512,
|
41 |
"model_type": "albert",
|
42 |
"net_structure_type": 0,
|
@@ -47,7 +47,7 @@
|
|
47 |
"pad_token_id": 0,
|
48 |
"padding": "max_length",
|
49 |
"position_embedding_type": "absolute",
|
50 |
-
"transformers_version": "4.
|
51 |
"type_vocab_size": 2,
|
52 |
"vocab_size": 32000
|
53 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "albertvillanova/autonlp-wikiann-entity_extraction-0c6d343-101875",
|
3 |
"_num_labels": 7,
|
4 |
"architectures": [
|
5 |
"AlbertForTokenClassification"
|
|
|
36 |
"6": 6
|
37 |
},
|
38 |
"layer_norm_eps": 1e-12,
|
39 |
+
"max_length": 96,
|
40 |
"max_position_embeddings": 512,
|
41 |
"model_type": "albert",
|
42 |
"net_structure_type": 0,
|
|
|
47 |
"pad_token_id": 0,
|
48 |
"padding": "max_length",
|
49 |
"position_embedding_type": "absolute",
|
50 |
+
"transformers_version": "4.6.1",
|
51 |
"type_vocab_size": 2,
|
52 |
"vocab_size": 32000
|
53 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42080d3ed92e65c13c467829d36c6f803f5a64587a55089aa8f7e94dffaf62cb
|
3 |
+
size 67605209
|