nemik's picture
End of training
188d300 verified
|
raw
history blame
3.71 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-384
tags:
  - generated_from_trainer
datasets:
  - webdataset
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: vit-base-patch16-384-finetuned_v2024-7-25-frost
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: webdataset
          type: webdataset
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9746666666666667
          - name: F1
            type: f1
            value: 0.9372937293729373
          - name: Precision
            type: precision
            value: 0.9342105263157895
          - name: Recall
            type: recall
            value: 0.9403973509933775

vit-base-patch16-384-finetuned_v2024-7-25-frost

This model is a fine-tuned version of google/vit-base-patch16-384 on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0795
  • Accuracy: 0.9747
  • F1: 0.9373
  • Precision: 0.9342
  • Recall: 0.9404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0624 1.7544 100 0.0458 0.9867 0.9665 0.9774 0.9558
0.0729 3.5088 200 0.0942 0.9689 0.9220 0.9303 0.9139
0.0566 5.2632 300 0.0802 0.972 0.9311 0.9221 0.9404
0.051 7.0175 400 0.0965 0.9631 0.9066 0.9243 0.8896
0.0686 8.7719 500 0.0795 0.9747 0.9373 0.9342 0.9404
0.0271 10.5263 600 0.0935 0.9693 0.9239 0.9229 0.9249
0.0273 12.2807 700 0.0975 0.9716 0.9300 0.9219 0.9382
0.0445 14.0351 800 0.0910 0.9698 0.9248 0.9268 0.9227
0.0217 15.7895 900 0.0942 0.9698 0.9243 0.9326 0.9161
0.0257 17.5439 1000 0.0906 0.9684 0.9210 0.9283 0.9139
0.0188 19.2982 1100 0.1028 0.9676 0.9181 0.9338 0.9029
0.0196 21.0526 1200 0.1020 0.9698 0.9244 0.9306 0.9183
0.025 22.8070 1300 0.1005 0.9702 0.9258 0.9289 0.9227
0.009 24.5614 1400 0.0976 0.9729 0.9324 0.9356 0.9294
0.0184 26.3158 1500 0.0987 0.9716 0.9290 0.9332 0.9249
0.0048 28.0702 1600 0.0958 0.972 0.9301 0.9353 0.9249
0.0072 29.8246 1700 0.0948 0.972 0.9301 0.9353 0.9249

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1