vit-base-patch16-384-finetuned_v2024-7-25-frost

This model is a fine-tuned version of google/vit-base-patch16-384 on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0795
  • Accuracy: 0.9747
  • F1: 0.9373
  • Precision: 0.9342
  • Recall: 0.9404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0624 1.7544 100 0.0458 0.9867 0.9665 0.9774 0.9558
0.0729 3.5088 200 0.0942 0.9689 0.9220 0.9303 0.9139
0.0566 5.2632 300 0.0802 0.972 0.9311 0.9221 0.9404
0.051 7.0175 400 0.0965 0.9631 0.9066 0.9243 0.8896
0.0686 8.7719 500 0.0795 0.9747 0.9373 0.9342 0.9404
0.0271 10.5263 600 0.0935 0.9693 0.9239 0.9229 0.9249
0.0273 12.2807 700 0.0975 0.9716 0.9300 0.9219 0.9382
0.0445 14.0351 800 0.0910 0.9698 0.9248 0.9268 0.9227
0.0217 15.7895 900 0.0942 0.9698 0.9243 0.9326 0.9161
0.0257 17.5439 1000 0.0906 0.9684 0.9210 0.9283 0.9139
0.0188 19.2982 1100 0.1028 0.9676 0.9181 0.9338 0.9029
0.0196 21.0526 1200 0.1020 0.9698 0.9244 0.9306 0.9183
0.025 22.8070 1300 0.1005 0.9702 0.9258 0.9289 0.9227
0.009 24.5614 1400 0.0976 0.9729 0.9324 0.9356 0.9294
0.0184 26.3158 1500 0.0987 0.9716 0.9290 0.9332 0.9249
0.0048 28.0702 1600 0.0958 0.972 0.9301 0.9353 0.9249
0.0072 29.8246 1700 0.0948 0.972 0.9301 0.9353 0.9249

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
86.1M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nemik/vit-base-patch16-384-finetuned_v2024-7-25-frost

Finetuned
(24)
this model

Evaluation results