metadata
datasets:
- imagenet-1k
library_name: timm
tags:
- image-classification
- timm
- rdnet
Model card for rdnet_large.nv_in1k
A RDNet image classification model. Trained on ImageNet-1k, original torchvision weights.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Imagenet-1k validation top-1 accuracy: 84.8%
- Params (M): 186
- GMACs: 34.7
- Image size: 224 x 224
- Papers:
- DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs: https://arxiv.org/abs/2403.19588
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
import torch
import rdnet # register rdnet models to timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('rdnet_large.nv_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
import rdnet # register rdnet models to timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'rdnet_large.nv_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 528, 56, 56])
# torch.Size([1, 840, 28, 28])
# torch.Size([1, 1528, 14, 14])
# torch.Size([1, 2000, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
import rdnet # register rdnet models to timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'rdnet_large.nv_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2000, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Citation
@misc{kim2024densenets,
title={DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs},
author={Donghyun Kim and Byeongho Heo and Dongyoon Han},
year={2024},
eprint={2403.19588},
archivePrefix={arXiv},
}