Image Classification
timm
PyTorch
rdnet
DongHyunKim commited on
Commit
fa75fae
1 Parent(s): 1ecbc1b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -1,11 +1,11 @@
1
  ---
 
 
 
2
  tags:
3
  - image-classification
4
  - timm
5
  - rdnet
6
- library_name: timm
7
- datasets:
8
- - imagenet-1k
9
  ---
10
  # Model card for rdnet_large.nv_in1k
11
 
@@ -29,6 +29,7 @@ from urllib.request import urlopen
29
  from PIL import Image
30
  import timm
31
  import torch
 
32
 
33
  img = Image.open(urlopen(
34
  'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
@@ -51,6 +52,7 @@ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100,
51
  from urllib.request import urlopen
52
  from PIL import Image
53
  import timm
 
54
 
55
  img = Image.open(urlopen(
56
  'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
@@ -72,12 +74,10 @@ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batc
72
  for o in output:
73
  # print shape of each feature map in output
74
  # e.g.:
75
- # torch.Size([1, 64, 224, 224])
76
- # torch.Size([1, 128, 112, 112])
77
- # torch.Size([1, 256, 56, 56])
78
- # torch.Size([1, 512, 28, 28])
79
- # torch.Size([1, 512, 14, 14])
80
- # torch.Size([1, 512, 7, 7])
81
 
82
  print(o.shape)
83
  ```
@@ -87,6 +87,7 @@ for o in output:
87
  from urllib.request import urlopen
88
  from PIL import Image
89
  import timm
 
90
 
91
  img = Image.open(urlopen(
92
  'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
@@ -108,7 +109,7 @@ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_featu
108
  # or equivalently (without needing to set num_classes=0)
109
 
110
  output = model.forward_features(transforms(img).unsqueeze(0))
111
- # output is unpooled, a (1, 512, 7, 7) shaped tensor
112
 
113
  output = model.forward_head(output, pre_logits=True)
114
  # output is a (1, num_features) shaped tensor
 
1
  ---
2
+ datasets:
3
+ - imagenet-1k
4
+ library_name: timm
5
  tags:
6
  - image-classification
7
  - timm
8
  - rdnet
 
 
 
9
  ---
10
  # Model card for rdnet_large.nv_in1k
11
 
 
29
  from PIL import Image
30
  import timm
31
  import torch
32
+ import rdnet # register rdnet models to timm
33
 
34
  img = Image.open(urlopen(
35
  'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
 
52
  from urllib.request import urlopen
53
  from PIL import Image
54
  import timm
55
+ import rdnet # register rdnet models to timm
56
 
57
  img = Image.open(urlopen(
58
  'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
 
74
  for o in output:
75
  # print shape of each feature map in output
76
  # e.g.:
77
+ # torch.Size([1, 528, 56, 56])
78
+ # torch.Size([1, 840, 28, 28])
79
+ # torch.Size([1, 1528, 14, 14])
80
+ # torch.Size([1, 2000, 7, 7])
 
 
81
 
82
  print(o.shape)
83
  ```
 
87
  from urllib.request import urlopen
88
  from PIL import Image
89
  import timm
90
+ import rdnet # register rdnet models to timm
91
 
92
  img = Image.open(urlopen(
93
  'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
 
109
  # or equivalently (without needing to set num_classes=0)
110
 
111
  output = model.forward_features(transforms(img).unsqueeze(0))
112
+ # output is unpooled, a (1, 2000, 7, 7) shaped tensor
113
 
114
  output = model.forward_head(output, pre_logits=True)
115
  # output is a (1, num_features) shaped tensor