leaderboard-pr-bot's picture
Adding Evaluation Results
1010f54 verified
|
raw
history blame
4.92 kB
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - transformers
datasets:
  - mwitiderrick/SwahiliAlpaca
base_model: mistralai/Mistral-7B-Instruct-v0.2
inference: true
model_type: mistral
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
  - name: SwahiliInstruct-v0.2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 55.2
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 78.22
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 50.3
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 57.08
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 73.24
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 11.45
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
          name: Open LLM Leaderboard

SwahiliInstruct-v0.2

This is a Mistral model that has been fine-tuned on the Swahili Alpaca dataset for 3 epochs.

Prompt Template

### Maelekezo:

{query}

### Jibu:
<Leave new line for model to respond> 

Usage

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/SwahiliInstruct-v0.2")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/SwahiliInstruct-v0.2", device_map="auto")
query = "Nipe maagizo ya kutengeneza mkate wa mandizi"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200, do_sample=True, repetition_penalty=1.1)
output = text_gen(f"### Maelekezo:\n{query}\n### Jibu:\n")
print(output[0]['generated_text'])


"""
 Maagizo ya kutengeneza mkate wa mandazi:
1. Preheat tanuri hadi 375°F (190°C).
2. Paka sufuria ya uso na siagi au jotoa sufuria.
3. Katika bakuli la chumvi, ongeza viungo vifuatavyo: unga, sukari ya kahawa, chumvi, mdalasini, na unga wa kakao.
Koroga mchanganyiko pamoja na mbegu za kikombe 1 1/2 za mtindi wenye jamii na hatua ya maji nyepesi.
4. Kando ya uwanja, changanya zaini ya yai 2
"""

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 54.25
AI2 Reasoning Challenge (25-Shot) 55.20
HellaSwag (10-Shot) 78.22
MMLU (5-Shot) 50.30
TruthfulQA (0-shot) 57.08
Winogrande (5-shot) 73.24
GSM8k (5-shot) 11.45