File size: 4,917 Bytes
06ac3b5 1010f54 06ac3b5 1010f54 06ac3b5 1010f54 06ac3b5 4008581 06ac3b5 d46e486 06ac3b5 4008581 06ac3b5 1b822c0 06ac3b5 1010f54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- transformers
datasets:
- mwitiderrick/SwahiliAlpaca
base_model: mistralai/Mistral-7B-Instruct-v0.2
inference: true
model_type: mistral
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
- name: SwahiliInstruct-v0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 55.2
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 78.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.08
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.24
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 11.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/SwahiliInstruct-v0.2
name: Open LLM Leaderboard
---
# SwahiliInstruct-v0.2
This is a [Mistral model](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) that has been fine-tuned on the [Swahili Alpaca dataset](https://huggingface.co/datasets/mwitiderrick/SwahiliAlpaca) for 3 epochs.
## Prompt Template
```
### Maelekezo:
{query}
### Jibu:
<Leave new line for model to respond>
```
## Usage
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/SwahiliInstruct-v0.2")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/SwahiliInstruct-v0.2", device_map="auto")
query = "Nipe maagizo ya kutengeneza mkate wa mandizi"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200, do_sample=True, repetition_penalty=1.1)
output = text_gen(f"### Maelekezo:\n{query}\n### Jibu:\n")
print(output[0]['generated_text'])
"""
Maagizo ya kutengeneza mkate wa mandazi:
1. Preheat tanuri hadi 375°F (190°C).
2. Paka sufuria ya uso na siagi au jotoa sufuria.
3. Katika bakuli la chumvi, ongeza viungo vifuatavyo: unga, sukari ya kahawa, chumvi, mdalasini, na unga wa kakao.
Koroga mchanganyiko pamoja na mbegu za kikombe 1 1/2 za mtindi wenye jamii na hatua ya maji nyepesi.
4. Kando ya uwanja, changanya zaini ya yai 2
"""
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mwitiderrick__SwahiliInstruct-v0.2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |54.25|
|AI2 Reasoning Challenge (25-Shot)|55.20|
|HellaSwag (10-Shot) |78.22|
|MMLU (5-Shot) |50.30|
|TruthfulQA (0-shot) |57.08|
|Winogrande (5-shot) |73.24|
|GSM8k (5-shot) |11.45|
|