mtc's picture
Upload folder using huggingface_hub
a03d4a9 verified
metadata
license: apache-2.0
base_model: google/mt5-large
tags:
  - generated_from_trainer
datasets:
  - mtc/span_absinth_with_articles_german_faithfulness_detection_dataset
model-index:
  - name: >-
      google-mt5-large_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_bounded-quetzal-2024-07-15
    results: []

Visualize in Weights & Biases

google-mt5-large_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_bounded-quetzal-2024-07-15

This model is a fine-tuned version of google/mt5-large on the mtc/span_absinth_with_articles_german_faithfulness_detection_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1459

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
5.7665 0.1534 100 2.7347
2.3656 0.3067 200 1.6610
1.1422 0.4601 300 0.5634
0.4894 0.6135 400 0.2760
0.3222 0.7669 500 0.2368
0.3563 0.9202 600 0.1922
0.2274 1.0736 700 0.1777
0.1465 1.2270 800 0.1763
0.1499 1.3804 900 0.1732
0.1379 1.5337 1000 0.1737
0.1311 1.6871 1100 0.1615
0.1535 1.8405 1200 0.1606
0.1303 1.9939 1300 0.1637
0.0981 2.1472 1400 0.1542
0.1385 2.3006 1500 0.1311
0.124 2.4540 1600 0.1427
0.1071 2.6074 1700 0.1430
0.1127 2.7607 1800 0.1476
0.1006 2.9141 1900 0.1459

Framework versions

  • Transformers 4.42.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1