File size: 2,820 Bytes
a03d4a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
base_model: google/mt5-large
tags:
- generated_from_trainer
datasets:
- mtc/span_absinth_with_articles_german_faithfulness_detection_dataset
model-index:
- name: google-mt5-large_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_bounded-quetzal-2024-07-15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/background-tool/span_absinth_evaluation/runs/0mq2kpk8)
# google-mt5-large_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_bounded-quetzal-2024-07-15
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on the mtc/span_absinth_with_articles_german_faithfulness_detection_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1459
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.7665 | 0.1534 | 100 | 2.7347 |
| 2.3656 | 0.3067 | 200 | 1.6610 |
| 1.1422 | 0.4601 | 300 | 0.5634 |
| 0.4894 | 0.6135 | 400 | 0.2760 |
| 0.3222 | 0.7669 | 500 | 0.2368 |
| 0.3563 | 0.9202 | 600 | 0.1922 |
| 0.2274 | 1.0736 | 700 | 0.1777 |
| 0.1465 | 1.2270 | 800 | 0.1763 |
| 0.1499 | 1.3804 | 900 | 0.1732 |
| 0.1379 | 1.5337 | 1000 | 0.1737 |
| 0.1311 | 1.6871 | 1100 | 0.1615 |
| 0.1535 | 1.8405 | 1200 | 0.1606 |
| 0.1303 | 1.9939 | 1300 | 0.1637 |
| 0.0981 | 2.1472 | 1400 | 0.1542 |
| 0.1385 | 2.3006 | 1500 | 0.1311 |
| 0.124 | 2.4540 | 1600 | 0.1427 |
| 0.1071 | 2.6074 | 1700 | 0.1430 |
| 0.1127 | 2.7607 | 1800 | 0.1476 |
| 0.1006 | 2.9141 | 1900 | 0.1459 |
### Framework versions
- Transformers 4.42.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|