metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: ModernBERT-base-ft-code-defect-detection-4k
results: []
ModernBERT-base-ft-code-defect-detection-4k
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5844
- Accuracy Score: 0.6537
- F1 Score: 0.5784
- Precision Score: 0.5171
- Recall Score: 0.6562
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Score | F1 Score | Precision Score | Recall Score |
---|---|---|---|---|---|---|---|
0.6795 | 1.0 | 342 | 0.6435 | 0.6120 | 0.3099 | 0.1896 | 0.8470 |
0.6168 | 2.0 | 684 | 0.5960 | 0.6395 | 0.4316 | 0.2980 | 0.7824 |
0.5605 | 3.0 | 1026 | 0.5844 | 0.6537 | 0.5784 | 0.5171 | 0.6562 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0