--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: ModernBERT-base-ft-code-defect-detection-4k results: [] --- # ModernBERT-base-ft-code-defect-detection-4k This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5844 - Accuracy Score: 0.6537 - F1 Score: 0.5784 - Precision Score: 0.5171 - Recall Score: 0.6562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | F1 Score | Precision Score | Recall Score | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:--------:|:---------------:|:------------:| | 0.6795 | 1.0 | 342 | 0.6435 | 0.6120 | 0.3099 | 0.1896 | 0.8470 | | 0.6168 | 2.0 | 684 | 0.5960 | 0.6395 | 0.4316 | 0.2980 | 0.7824 | | 0.5605 | 3.0 | 1026 | 0.5844 | 0.6537 | 0.5784 | 0.5171 | 0.6562 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0