inctraining1 / README.md
mn720's picture
End of training
422d26f verified
---
language:
- sw
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_15_0
metrics:
- wer
model-index:
- name: Incremental Swahili Luganda
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mix data
type: mozilla-foundation/common_voice_15_0
config: lg
split: validation
args: 'config: lu, split: test'
metrics:
- name: Wer
type: wer
value: 36.177788108016735
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Incremental Swahili Luganda
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Mix data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3827
- Wer: 36.1778
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3394 | 0.0740 | 500 | 0.4718 | 44.4111 |
| 0.3858 | 0.1481 | 1000 | 0.4562 | 42.6277 |
| 0.3431 | 0.2221 | 1500 | 0.4337 | 40.9521 |
| 0.3576 | 0.2962 | 2000 | 0.4183 | 39.3431 |
| 0.3434 | 0.3702 | 2500 | 0.4046 | 38.4007 |
| 0.3242 | 0.4443 | 3000 | 0.3948 | 37.2575 |
| 0.3604 | 0.5183 | 3500 | 0.3871 | 36.8201 |
| 0.2958 | 0.5924 | 4000 | 0.3827 | 36.1778 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1