inctraining1 / README.md
mn720's picture
End of training
422d26f verified
metadata
language:
  - sw
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_15_0
metrics:
  - wer
model-index:
  - name: Incremental Swahili Luganda
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Mix data
          type: mozilla-foundation/common_voice_15_0
          config: lg
          split: validation
          args: 'config: lu, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 36.177788108016735

Incremental Swahili Luganda

This model is a fine-tuned version of openai/whisper-small on the Mix data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3827
  • Wer: 36.1778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3394 0.0740 500 0.4718 44.4111
0.3858 0.1481 1000 0.4562 42.6277
0.3431 0.2221 1500 0.4337 40.9521
0.3576 0.2962 2000 0.4183 39.3431
0.3434 0.3702 2500 0.4046 38.4007
0.3242 0.4443 3000 0.3948 37.2575
0.3604 0.5183 3500 0.3871 36.8201
0.2958 0.5924 4000 0.3827 36.1778

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu118
  • Datasets 2.19.0
  • Tokenizers 0.19.1