NeuralMarcoro14-7B / README.md
mlabonne's picture
Update README.md
61051a6 verified
---
license: cc-by-nc-4.0
tags:
- mlabonne/Marcoro14-7B-slerp
- dpo
- rlhf
- merge
- mergekit
- lazymergekit
datasets:
- mlabonne/chatml_dpo_pairs
base_model: mlabonne/Marcoro14-7B-slerp
model-index:
- name: NeuralMarcoro14-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.42
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.84
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.64
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
name: Open LLM Leaderboard
---
![](https://i.imgur.com/CBen22L.jpg)
# NeuralMarcoro14-7B
This is a DPO fine-tuned version of [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) using the [chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) preference dataset.
It improves the performance of the model on Nous benchmark suite and the Open LLM Benchmark.
It is currently the best-performing 7B LLM on the Open LLM Leaderboard (08/01/24).
You can try it out in this [Space](https://huggingface.co/spaces/mlabonne/NeuralMarcoro14-7B-GGUF-Chat) (GGUF Q4_K_M).
## ⚡ Quantized models
* **GGUF**: https://huggingface.co/mlabonne/NeuralMarcoro14-7B-GGUF
## 🏆 Evaluation
### Open LLM Leaderboard
![](https://i.imgur.com/Int9P07.png)
![](https://i.imgur.com/70NXUKD.png)
### Nous
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|[NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B)| 44.59| 76.17| 65.94| 46.9| 58.4|
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
|Change | -0.07| -0.07| +1.79| +1.26| +0.73|
## 🧩 Training hyperparameters
**LoRA**:
* r=16
* lora_alpha=16
* lora_dropout=0.05
* bias="none"
* task_type="CAUSAL_LM"
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
**Training arguments**:
* per_device_train_batch_size=4
* gradient_accumulation_steps=4
* gradient_checkpointing=True
* learning_rate=5e-5
* lr_scheduler_type="cosine"
* max_steps=200
* optim="paged_adamw_32bit"
* warmup_steps=100
**DPOTrainer**:
* beta=0.1
* max_prompt_length=1024
* max_length=1536
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralMarcoro14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```