File size: 5,329 Bytes
e450b45
0632ea9
e450b45
 
 
 
f00674a
 
 
e450b45
 
181e80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e450b45
 
86fc1af
e450b45
 
 
ca7d610
 
 
 
86fc1af
df26768
86fc1af
 
 
 
e450b45
 
 
ca7d610
 
 
 
 
 
 
 
7f578a1
 
 
e206d4a
7f578a1
e450b45
be69189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e450b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61051a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
license: cc-by-nc-4.0
tags:
- mlabonne/Marcoro14-7B-slerp
- dpo
- rlhf
- merge
- mergekit
- lazymergekit
datasets:
- mlabonne/chatml_dpo_pairs
base_model: mlabonne/Marcoro14-7B-slerp
model-index:
- name: NeuralMarcoro14-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 71.42
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.59
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.84
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 65.64
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 81.22
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.74
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B
      name: Open LLM Leaderboard
---

![](https://i.imgur.com/CBen22L.jpg)

# NeuralMarcoro14-7B

This is a DPO fine-tuned version of [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) using the [chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) preference dataset. 
It improves the performance of the model on Nous benchmark suite and the Open LLM Benchmark.

It is currently the best-performing 7B LLM on the Open LLM Leaderboard (08/01/24).

You can try it out in this [Space](https://huggingface.co/spaces/mlabonne/NeuralMarcoro14-7B-GGUF-Chat) (GGUF Q4_K_M).

## ⚡ Quantized models

* **GGUF**: https://huggingface.co/mlabonne/NeuralMarcoro14-7B-GGUF

## 🏆 Evaluation

### Open LLM Leaderboard

![](https://i.imgur.com/Int9P07.png)

![](https://i.imgur.com/70NXUKD.png)

### Nous

|          Model          |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|[NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B)|  44.59|  76.17|     65.94|    46.9|   58.4|
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp)       |  44.66|  76.24|     64.15|   45.64|  57.67|
|Change                   |  -0.07|  -0.07|    +1.79|   +1.26|   +0.73|

## 🧩 Training hyperparameters

**LoRA**:
* r=16
* lora_alpha=16
* lora_dropout=0.05
* bias="none"
* task_type="CAUSAL_LM"
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']

**Training arguments**:
* per_device_train_batch_size=4
* gradient_accumulation_steps=4
* gradient_checkpointing=True
* learning_rate=5e-5
* lr_scheduler_type="cosine"
* max_steps=200
* optim="paged_adamw_32bit"
* warmup_steps=100

**DPOTrainer**:
* beta=0.1
* max_prompt_length=1024
* max_length=1536

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/NeuralMarcoro14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```