|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- mistral |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- distillation |
|
- dpo |
|
- rlhf |
|
- laser |
|
datasets: |
|
- mlabonne/chatml_dpo_pairs |
|
base_model: teknium/OpenHermes-2.5-Mistral-7B |
|
model-index: |
|
- name: NeuralHermes-2.5-Mistral-7B-laser |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 66.38 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 85.09 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 63.43 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 54.95 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 78.14 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 55.72 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
<center><img src="https://i.imgur.com/gUlEJuU.jpeg"></center> |
|
|
|
# NeuralHermes 2.5 - Mistral 7B - LASER |
|
|
|
This is an experimental LASER version of NeuralHermes using [laserRMT](https://github.com/cognitivecomputations/laserRMT), based on [this paper](https://arxiv.org/pdf/2312.13558.pdf). |
|
|
|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |
|
|------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)| 43.54| 73.44| 55.26| 42.24| 53.62| |
|
|[NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) | 43.67| 73.24| 55.37| 41.76| 53.51| |
|
|
|
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024. |
|
|
|
NeuralHermes is an [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on several benchmarks (see results). |
|
|
|
It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. |
|
|
|
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour. |
|
|
|
## Results |
|
|
|
### AGIEval |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------|------:|--------|----:|---|-----:| |
|
|agieval_aqua_rat | 0|acc |21.26|± | 2.57| |
|
| | |acc_norm|22.83|± | 2.64| |
|
|agieval_logiqa_en | 0|acc |39.32|± | 1.92| |
|
| | |acc_norm|40.71|± | 1.93| |
|
|agieval_lsat_ar | 0|acc |25.65|± | 2.89| |
|
| | |acc_norm|25.65|± | 2.89| |
|
|agieval_lsat_lr | 0|acc |48.82|± | 2.22| |
|
| | |acc_norm|50.00|± | 2.22| |
|
|agieval_lsat_rc | 0|acc |58.36|± | 3.01| |
|
| | |acc_norm|57.25|± | 3.02| |
|
|agieval_sat_en | 0|acc |74.27|± | 3.05| |
|
| | |acc_norm|73.30|± | 3.09| |
|
|agieval_sat_en_without_passage| 0|acc |43.69|± | 3.46| |
|
| | |acc_norm|42.23|± | 3.45| |
|
|agieval_sat_math | 0|acc |37.27|± | 3.27| |
|
| | |acc_norm|36.36|± | 3.25| |
|
|
|
Average: 43.54% |
|
|
|
### GPT4All |
|
| Task |Version| Metric |Value| |Stderr| |
|
|-------------|------:|--------|----:|---|-----:| |
|
|arc_challenge| 0|acc |57.76|± | 1.44| |
|
| | |acc_norm|60.32|± | 1.43| |
|
|arc_easy | 0|acc |83.84|± | 0.76| |
|
| | |acc_norm|81.10|± | 0.80| |
|
|boolq | 1|acc |86.70|± | 0.59| |
|
|hellaswag | 0|acc |63.15|± | 0.48| |
|
| | |acc_norm|82.55|± | 0.38| |
|
|openbookqa | 0|acc |34.40|± | 2.13| |
|
| | |acc_norm|45.20|± | 2.23| |
|
|piqa | 0|acc |81.94|± | 0.90| |
|
| | |acc_norm|82.97|± | 0.88| |
|
|winogrande | 0|acc |75.22|± | 1.21| |
|
|
|
Average: 73.44% |
|
|
|
### TruthfulQA |
|
| Task |Version|Metric|Value| |Stderr| |
|
|-------------|------:|------|----:|---|-----:| |
|
|truthfulqa_mc| 1|mc1 |37.70|± | 1.70| |
|
| | |mc2 |55.26|± | 1.52| |
|
|
|
Average: 55.26% |
|
|
|
### Bigbench |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------------------------|------:|---------------------|----:|---|-----:| |
|
|bigbench_causal_judgement | 0|multiple_choice_grade|53.16|± | 3.63| |
|
|bigbench_date_understanding | 0|multiple_choice_grade|65.31|± | 2.48| |
|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|34.11|± | 2.96| |
|
|bigbench_geometric_shapes | 0|multiple_choice_grade|27.02|± | 2.35| |
|
| | |exact_str_match | 0.28|± | 0.28| |
|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|27.80|± | 2.01| |
|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|19.86|± | 1.51| |
|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|48.33|± | 2.89| |
|
|bigbench_movie_recommendation | 0|multiple_choice_grade|41.40|± | 2.20| |
|
|bigbench_navigate | 0|multiple_choice_grade|50.00|± | 1.58| |
|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|65.00|± | 1.07| |
|
|bigbench_ruin_names | 0|multiple_choice_grade|46.21|± | 2.36| |
|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|27.25|± | 1.41| |
|
|bigbench_snarks | 0|multiple_choice_grade|70.72|± | 3.39| |
|
|bigbench_sports_understanding | 0|multiple_choice_grade|65.72|± | 1.51| |
|
|bigbench_temporal_sequences | 0|multiple_choice_grade|30.40|± | 1.46| |
|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.56|± | 1.18| |
|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.09|± | 0.90| |
|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|48.33|± | 2.89| |
|
|
|
Average: 42.24% |
|
|
|
Average score: 53.62% |
|
|
|
## Usage |
|
|
|
You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend. |
|
|
|
You can also run this model using the following code: |
|
|
|
```python |
|
import transformers |
|
from transformers import AutoTokenizer |
|
|
|
# Format prompt |
|
message = [ |
|
{"role": "system", "content": "You are a helpful assistant chatbot."}, |
|
{"role": "user", "content": "What is a Large Language Model?"} |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained(new_model) |
|
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) |
|
|
|
# Create pipeline |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model="mlabonne/NeuralHermes-2.5-Mistral-7B-laser", |
|
tokenizer=tokenizer |
|
) |
|
|
|
# Generate text |
|
sequences = pipeline( |
|
prompt, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
max_length=200, |
|
) |
|
print(sequences[0]['generated_text']) |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__NeuralHermes-2.5-Mistral-7B-laser) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |67.29| |
|
|AI2 Reasoning Challenge (25-Shot)|66.38| |
|
|HellaSwag (10-Shot) |85.09| |
|
|MMLU (5-Shot) |63.43| |
|
|TruthfulQA (0-shot) |54.95| |
|
|Winogrande (5-shot) |78.14| |
|
|GSM8k (5-shot) |55.72| |
|
|
|
|