---
language:
- en
license: apache-2.0
tags:
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- dpo
- rlhf
- laser
datasets:
- mlabonne/chatml_dpo_pairs
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
- name: NeuralHermes-2.5-Mistral-7B-laser
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.38
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.09
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 54.95
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.14
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.72
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
---
# NeuralHermes 2.5 - Mistral 7B - LASER
This is an experimental LASER version of NeuralHermes using [laserRMT](https://github.com/cognitivecomputations/laserRMT), based on [this paper](https://arxiv.org/pdf/2312.13558.pdf).
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)| 43.54| 73.44| 55.26| 42.24| 53.62|
|[NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) | 43.67| 73.24| 55.37| 41.76| 53.51|
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
NeuralHermes is an [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on several benchmarks (see results).
It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.
## Results
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |21.26|± | 2.57|
| | |acc_norm|22.83|± | 2.64|
|agieval_logiqa_en | 0|acc |39.32|± | 1.92|
| | |acc_norm|40.71|± | 1.93|
|agieval_lsat_ar | 0|acc |25.65|± | 2.89|
| | |acc_norm|25.65|± | 2.89|
|agieval_lsat_lr | 0|acc |48.82|± | 2.22|
| | |acc_norm|50.00|± | 2.22|
|agieval_lsat_rc | 0|acc |58.36|± | 3.01|
| | |acc_norm|57.25|± | 3.02|
|agieval_sat_en | 0|acc |74.27|± | 3.05|
| | |acc_norm|73.30|± | 3.09|
|agieval_sat_en_without_passage| 0|acc |43.69|± | 3.46|
| | |acc_norm|42.23|± | 3.45|
|agieval_sat_math | 0|acc |37.27|± | 3.27|
| | |acc_norm|36.36|± | 3.25|
Average: 43.54%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |57.76|± | 1.44|
| | |acc_norm|60.32|± | 1.43|
|arc_easy | 0|acc |83.84|± | 0.76|
| | |acc_norm|81.10|± | 0.80|
|boolq | 1|acc |86.70|± | 0.59|
|hellaswag | 0|acc |63.15|± | 0.48|
| | |acc_norm|82.55|± | 0.38|
|openbookqa | 0|acc |34.40|± | 2.13|
| | |acc_norm|45.20|± | 2.23|
|piqa | 0|acc |81.94|± | 0.90|
| | |acc_norm|82.97|± | 0.88|
|winogrande | 0|acc |75.22|± | 1.21|
Average: 73.44%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |37.70|± | 1.70|
| | |mc2 |55.26|± | 1.52|
Average: 55.26%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|53.16|± | 3.63|
|bigbench_date_understanding | 0|multiple_choice_grade|65.31|± | 2.48|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|34.11|± | 2.96|
|bigbench_geometric_shapes | 0|multiple_choice_grade|27.02|± | 2.35|
| | |exact_str_match | 0.28|± | 0.28|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|27.80|± | 2.01|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|19.86|± | 1.51|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|48.33|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|41.40|± | 2.20|
|bigbench_navigate | 0|multiple_choice_grade|50.00|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|65.00|± | 1.07|
|bigbench_ruin_names | 0|multiple_choice_grade|46.21|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|27.25|± | 1.41|
|bigbench_snarks | 0|multiple_choice_grade|70.72|± | 3.39|
|bigbench_sports_understanding | 0|multiple_choice_grade|65.72|± | 1.51|
|bigbench_temporal_sequences | 0|multiple_choice_grade|30.40|± | 1.46|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.56|± | 1.18|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.09|± | 0.90|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|48.33|± | 2.89|
Average: 42.24%
Average score: 53.62%
## Usage
You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend.
You can also run this model using the following code:
```python
import transformers
from transformers import AutoTokenizer
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model="mlabonne/NeuralHermes-2.5-Mistral-7B-laser",
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__NeuralHermes-2.5-Mistral-7B-laser)
| Metric |Value|
|---------------------------------|----:|
|Avg. |67.29|
|AI2 Reasoning Challenge (25-Shot)|66.38|
|HellaSwag (10-Shot) |85.09|
|MMLU (5-Shot) |63.43|
|TruthfulQA (0-shot) |54.95|
|Winogrande (5-shot) |78.14|
|GSM8k (5-shot) |55.72|