metadata
library_name: peft
language:
- it
base_model: b-brave/asr_double_training_15-10-2024_merged
tags:
- generated_from_trainer
datasets:
- ASR_BB_and_EC
metrics:
- wer
model-index:
- name: Whisper Medium
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: ASR_BB_and_EC
type: ASR_BB_and_EC
config: default
split: test
args: default
metrics:
- type: wer
value: 35.5638166047088
name: Wer
Whisper Medium
This model is a fine-tuned version of b-brave/asr_double_training_15-10-2024_merged on the ASR_BB_and_EC dataset. It achieves the following results on the evaluation set:
- Loss: 0.4733
- Wer: 35.5638
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.3876 | 0.9852 | 100 | 0.4835 | 36.3073 |
1.3282 | 1.9704 | 200 | 0.4776 | 36.1834 |
1.2853 | 2.9557 | 300 | 0.4733 | 35.5638 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.2.0
- Datasets 3.1.0
- Tokenizers 0.20.3