File size: 2,028 Bytes
eff9e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eeb259
eff9e5e
 
 
 
 
 
 
 
 
 
7eeb259
 
eff9e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eeb259
eff9e5e
 
 
 
 
 
4c2061f
7eeb259
 
eff9e5e
 
 
 
 
 
7eeb259
 
 
eff9e5e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: peft
language:
- it
base_model: b-brave/asr_double_training_15-10-2024_merged
tags:
- generated_from_trainer
datasets:
- ASR_BB_and_EC
metrics:
- wer
model-index:
- name: Whisper Medium
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: ASR_BB_and_EC
      type: ASR_BB_and_EC
      config: default
      split: test
      args: default
    metrics:
    - type: wer
      value: 35.5638166047088
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium

This model is a fine-tuned version of [b-brave/asr_double_training_15-10-2024_merged](https://huggingface.co/b-brave/asr_double_training_15-10-2024_merged) on the ASR_BB_and_EC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4733
- Wer: 35.5638

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 1.3876        | 0.9852 | 100  | 0.4835          | 36.3073 |
| 1.3282        | 1.9704 | 200  | 0.4776          | 36.1834 |
| 1.2853        | 2.9557 | 300  | 0.4733          | 35.5638 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.2.0
- Datasets 3.1.0
- Tokenizers 0.20.3