File size: 7,342 Bytes
1b0d91b 7f735f2 8e618cc dec0d0e 1b0d91b dec0d0e 19aab71 adf9b37 19aab71 adf9b37 4490f2c dec0d0e 19aab71 e882bc6 19aab71 e882bc6 47243b7 e882bc6 19aab71 e882bc6 19aab71 e882bc6 19aab71 3ffd10a adf9b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
language:
- en
inference: false
tags:
- text-classification
- onnx
- int8
- optimum
- multi-class-classification
- ONNXRuntime
license: apache-2.0
---
# LLM user flow classification
This model identifies common events and patterns within the conversation flow.
Such events include, for example, complaint, when a user expresses dissatisfaction.
The flow labels can serve as foundational elements for sophisticated LLM analytics.
It is ONNX quantized and is a fined-tune of [MiniLMv2-L6-H384](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large).
The base model can be found [here](https://huggingface.co/minuva/MiniLMv2-userflow-v2)
This model is used *only* for the user texts. For the LLM texts in the dialog use this [agent model](https://huggingface.co/minuva/MiniLMv2-agentflow-v2-onnx).
# Optimum
## Installation
Install from source:
```bash
python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git
```
## Run the Model
```py
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline
model = ORTModelForSequenceClassification.from_pretrained('minuva/MiniLMv2-userflow-v2-onnx', provider="CPUExecutionProvider")
tokenizer = AutoTokenizer.from_pretrained('minuva/MiniLMv2-userflow-v2-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length')
pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, )
texts = ["that's wrong", "can you please answer me?"]
pipe(texts)
# [{'label': 'model_wrong_or_try_again', 'score': 0.9737648367881775},
# {'label': 'user_wants_agent_to_answer', 'score': 0.9105103015899658}]
```
# ONNX Runtime only
A lighter solution for deployment
## Installation
```bash
pip install tokenizers
pip install onnxruntime
git clone https://huggingface.co/minuva/MiniLMv2-userflow-v2-onnx
```
## Run the Model
```py
import os
import numpy as np
import json
from tokenizers import Tokenizer
from onnxruntime import InferenceSession
model_name = "minuva/MiniLMv2-userflow-v2-onnx"
tokenizer = Tokenizer.from_pretrained(model_name)
tokenizer.enable_padding(
pad_token="<pad>",
pad_id=1,
)
tokenizer.enable_truncation(max_length=256)
batch_size = 16
texts = ["that's wrong", "can you please answer me?"]
outputs = []
model = InferenceSession("MiniLMv2-userflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])
with open(os.path.join("MiniLMv2-userflow-v2-onnx", "config.json"), "r") as f:
config = json.load(f)
output_names = [output.name for output in model.get_outputs()]
input_names = [input.name for input in model.get_inputs()]
for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
encodings = tokenizer.encode_batch(list(subtexts))
inputs = {
"input_ids": np.vstack(
[encoding.ids for encoding in encodings],
),
"attention_mask": np.vstack(
[encoding.attention_mask for encoding in encodings],
),
"token_type_ids": np.vstack(
[encoding.type_ids for encoding in encodings],
),
}
for input_name in input_names:
if input_name not in inputs:
raise ValueError(f"Input name {input_name} not found in inputs")
inputs = {input_name: inputs[input_name] for input_name in input_names}
output = np.squeeze(
np.stack(
model.run(output_names=output_names, input_feed=inputs)
),
axis=0,
)
outputs.append(output)
outputs = np.concatenate(outputs, axis=0)
scores = 1 / (1 + np.exp(-outputs))
results = []
for item in scores:
labels = []
scores = []
for idx, s in enumerate(item):
labels.append(config["id2label"][str(idx)])
scores.append(float(s))
results.append({"labels": labels, "scores": scores})
res = []
for result in results:
joined = list(zip(result['labels'], result['scores']))
max_score = max(joined, key=lambda x: x[1])
res.append(max_score)
res
#[('model_wrong_or_try_again', 0.9737648367881775),
# ('user_wants_agent_to_answer', 0.9105103015899658)]
```
# Categories Explanation
<details>
<summary>Click to expand!</summary>
- OTHER: Responses that do not fit into any predefined categories or are outside the scope of the specific interaction types listed.
- agrees_praising_thanking: When the user agrees with the provided information, offers praise, or expresses gratitude.
- asks_source: The user requests the source of the information or the basis for the answer provided.
- continue: Indicates a prompt for the conversation to proceed or continue without a specific directional change.
- continue_or_finnish_code: Signals either to continue with the current line of discussion or code execution, or to conclude it.
- improve_or_modify_answer: The user requests an improvement or modification to the provided answer.
- lack_of_understandment: Reflects the user's or agent confusion or lack of understanding regarding the information provided.
- model_wrong_or_try_again: Indicates that the model's response was incorrect or unsatisfactory, suggesting a need to attempt another answer.
- more_listing_or_expand: The user requests further elaboration, expansion from the given list by the agent.
- repeat_answers_or_question: The need to reiterate a previous answer or question.
- request_example: The user asks for examples to better understand the concept or answer provided.
- user_complains_repetition: The user notes that the information or responses are repetitive, indicating a need for new or different content.
- user_doubts_answer: The user expresses skepticism or doubt regarding the accuracy or validity of the provided answer.
- user_goodbye: The user says goodbye to the agent.
- user_reminds_question: The user reiterates the question.
- user_wants_agent_to_answer: The user explicitly requests a response from the agent, when the agent refuses to do so.
- user_wants_explanation: The user seeks an explanation behind the information or answer provided.
- user_wants_more_detail: Indicates the user's desire for more comprehensive or detailed information on the topic.
- user_wants_shorter_longer_answer: The user requests that the answer be condensed or expanded to better meet their informational needs.
- user_wants_simplier_explanation: The user seeks a simpler, more easily understood explanation.
- user_wants_yes_or_no: The user is asking for a straightforward affirmative or negative answer, without additional detail or explanation.
</details>
<br>
# Metrics in our private test dataset
| Model (params) | Loss | Accuracy | F1 |
|--------------------|-------------|----------|--------|
| minuva/MiniLMv2-userflow-v2 (33M) | 0.6738 | 0.7236 | 0.7313 |
| minuva/MiniLMv2-userflow-v2-onnx (33M) | - | 0.7195 | 0.7189 |
# Deployment
Check our [llm-flow-classification repository](https://github.com/minuva/llm-flow-classification) for a FastAPI and ONNX based server to deploy this model on CPU devices. |