Ngit commited on
Commit
e882bc6
1 Parent(s): aacb62a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -4
README.md CHANGED
@@ -12,9 +12,39 @@ This model identifies common events and patterns within the conversation flow. S
12
 
13
  This model should be used *only* for user dialogs.
14
 
15
- # Usage
 
16
 
17
  ## Installation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ```bash
19
  pip install tokenizers
20
  pip install onnxruntime
@@ -43,7 +73,9 @@ tokenizer.enable_padding(
43
  tokenizer.enable_truncation(max_length=256)
44
  batch_size = 16
45
 
46
- texts = ["I am angry", "I feel in love"]
 
 
47
  outputs = []
48
  model = InferenceSession("MiniLMv2-userflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])
49
 
@@ -100,8 +132,8 @@ for result in results:
100
  res.append(max_score)
101
 
102
  res
103
- #[('model_wrong_or_try_again', 0.9982967972755432),
104
- # ('user_wants_agent_to_answer', 0.996489942073822)]
105
  ```
106
 
107
  # Categories Explanation
 
12
 
13
  This model should be used *only* for user dialogs.
14
 
15
+
16
+ # Optimum
17
 
18
  ## Installation
19
+
20
+ Install from source:
21
+ ```bash
22
+ python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git
23
+ ```
24
+
25
+
26
+ ## Run the Model
27
+ ```py
28
+ from optimum.onnxruntime import ORTModelForSequenceClassification
29
+ from transformers import AutoTokenizer, pipeline
30
+
31
+ model = ORTModelForSequenceClassification.from_pretrained('Ngit/MiniLMv2-userflow-v2-onnx', provider="CPUExecutionProvider")
32
+ tokenizer = AutoTokenizer.from_pretrained('Ngit/MiniLMv2-userflow-v2-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length')
33
+
34
+ pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, )
35
+ texts = ["that's wrong", "can you please answer me?"]
36
+ pipe(texts)
37
+ # [{'label': 'model_wrong_or_try_again', 'score': 0.9737648367881775},
38
+ # {'label': 'user_wants_agent_to_answer', 'score': 0.9105103015899658}]
39
+ ```
40
+
41
+
42
+ # ONNX Runtime only
43
+
44
+ A lighter solution for deployment
45
+
46
+ ## Installation
47
+
48
  ```bash
49
  pip install tokenizers
50
  pip install onnxruntime
 
73
  tokenizer.enable_truncation(max_length=256)
74
  batch_size = 16
75
 
76
+ texts = ["that's wrong", "can you please answer me?"]
77
+
78
+
79
  outputs = []
80
  model = InferenceSession("MiniLMv2-userflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])
81
 
 
132
  res.append(max_score)
133
 
134
  res
135
+ #[('model_wrong_or_try_again', 0.9737648367881775),
136
+ # ('user_wants_agent_to_answer', 0.9105103015899658)]
137
  ```
138
 
139
  # Categories Explanation