Update README.md
Browse files
README.md
CHANGED
@@ -12,9 +12,39 @@ This model identifies common events and patterns within the conversation flow. S
|
|
12 |
|
13 |
This model should be used *only* for user dialogs.
|
14 |
|
15 |
-
|
|
|
16 |
|
17 |
## Installation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
```bash
|
19 |
pip install tokenizers
|
20 |
pip install onnxruntime
|
@@ -43,7 +73,9 @@ tokenizer.enable_padding(
|
|
43 |
tokenizer.enable_truncation(max_length=256)
|
44 |
batch_size = 16
|
45 |
|
46 |
-
texts = ["
|
|
|
|
|
47 |
outputs = []
|
48 |
model = InferenceSession("MiniLMv2-userflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])
|
49 |
|
@@ -100,8 +132,8 @@ for result in results:
|
|
100 |
res.append(max_score)
|
101 |
|
102 |
res
|
103 |
-
#[('model_wrong_or_try_again', 0.
|
104 |
-
# ('user_wants_agent_to_answer', 0.
|
105 |
```
|
106 |
|
107 |
# Categories Explanation
|
|
|
12 |
|
13 |
This model should be used *only* for user dialogs.
|
14 |
|
15 |
+
|
16 |
+
# Optimum
|
17 |
|
18 |
## Installation
|
19 |
+
|
20 |
+
Install from source:
|
21 |
+
```bash
|
22 |
+
python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git
|
23 |
+
```
|
24 |
+
|
25 |
+
|
26 |
+
## Run the Model
|
27 |
+
```py
|
28 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
29 |
+
from transformers import AutoTokenizer, pipeline
|
30 |
+
|
31 |
+
model = ORTModelForSequenceClassification.from_pretrained('Ngit/MiniLMv2-userflow-v2-onnx', provider="CPUExecutionProvider")
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained('Ngit/MiniLMv2-userflow-v2-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length')
|
33 |
+
|
34 |
+
pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, )
|
35 |
+
texts = ["that's wrong", "can you please answer me?"]
|
36 |
+
pipe(texts)
|
37 |
+
# [{'label': 'model_wrong_or_try_again', 'score': 0.9737648367881775},
|
38 |
+
# {'label': 'user_wants_agent_to_answer', 'score': 0.9105103015899658}]
|
39 |
+
```
|
40 |
+
|
41 |
+
|
42 |
+
# ONNX Runtime only
|
43 |
+
|
44 |
+
A lighter solution for deployment
|
45 |
+
|
46 |
+
## Installation
|
47 |
+
|
48 |
```bash
|
49 |
pip install tokenizers
|
50 |
pip install onnxruntime
|
|
|
73 |
tokenizer.enable_truncation(max_length=256)
|
74 |
batch_size = 16
|
75 |
|
76 |
+
texts = ["that's wrong", "can you please answer me?"]
|
77 |
+
|
78 |
+
|
79 |
outputs = []
|
80 |
model = InferenceSession("MiniLMv2-userflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])
|
81 |
|
|
|
132 |
res.append(max_score)
|
133 |
|
134 |
res
|
135 |
+
#[('model_wrong_or_try_again', 0.9737648367881775),
|
136 |
+
# ('user_wants_agent_to_answer', 0.9105103015899658)]
|
137 |
```
|
138 |
|
139 |
# Categories Explanation
|