Ngit commited on
Commit
19aab71
1 Parent(s): 71999d7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -0
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Text Classification of conversation flow
2
+
3
+ This a ONNX quantized model and is fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large).
4
+ The original model can be found [here](minuva/MiniLMv2-userflow-v2)
5
+
6
+ A flow label is orthogonal to the main conversation goal, implying that it categorizes actions or responses in a way that is independent from the primary objective of the conversation.
7
+
8
+ # Usage
9
+
10
+ ## Installation
11
+ ```bash
12
+ pip install tokenizers
13
+ pip install onnxruntime
14
+ git clone https://huggingface.co/minuva/MiniLMv2-userflow-v2-onnx
15
+ ```
16
+
17
+
18
+ ## Run the Model
19
+
20
+ ```py
21
+ import os
22
+ import numpy as np
23
+ import json
24
+
25
+ from tokenizers import Tokenizer
26
+ from onnxruntime import InferenceSession
27
+
28
+
29
+ model_name = "minuva/MiniLMv2-userflow-v2-onnx"
30
+
31
+ tokenizer = Tokenizer.from_pretrained(model_name)
32
+ tokenizer.enable_padding(
33
+ pad_token="<pad>",
34
+ pad_id=1,
35
+ )
36
+ tokenizer.enable_truncation(max_length=256)
37
+ batch_size = 16
38
+
39
+ texts = ["I am angry", "I feel in love"]
40
+ outputs = []
41
+ model = InferenceSession("MiniLMv2-userflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])
42
+
43
+ with open(os.path.join("MiniLMv2-userflow-v2-onnx", "config.json"), "r") as f:
44
+ config = json.load(f)
45
+
46
+ output_names = [output.name for output in model.get_outputs()]
47
+ input_names = [input.name for input in model.get_inputs()]
48
+
49
+ for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
50
+ encodings = tokenizer.encode_batch(list(subtexts))
51
+ inputs = {
52
+ "input_ids": np.vstack(
53
+ [encoding.ids for encoding in encodings],
54
+ ),
55
+ "attention_mask": np.vstack(
56
+ [encoding.attention_mask for encoding in encodings],
57
+ ),
58
+ "token_type_ids": np.vstack(
59
+ [encoding.type_ids for encoding in encodings],
60
+ ),
61
+ }
62
+
63
+ for input_name in input_names:
64
+ if input_name not in inputs:
65
+ raise ValueError(f"Input name {input_name} not found in inputs")
66
+
67
+ inputs = {input_name: inputs[input_name] for input_name in input_names}
68
+ output = np.squeeze(
69
+ np.stack(
70
+ model.run(output_names=output_names, input_feed=inputs)
71
+ ),
72
+ axis=0,
73
+ )
74
+ outputs.append(output)
75
+
76
+ outputs = np.concatenate(outputs, axis=0)
77
+ scores = 1 / (1 + np.exp(-outputs))
78
+ results = []
79
+ for item in scores:
80
+ labels = []
81
+ scores = []
82
+ for idx, s in enumerate(item):
83
+ labels.append(config["id2label"][str(idx)])
84
+ scores.append(float(s))
85
+ results.append({"labels": labels, "scores": scores})
86
+
87
+
88
+ res = []
89
+
90
+ for result in results:
91
+ joined = list(zip(result['labels'], result['scores']))
92
+ max_score = max(joined, key=lambda x: x[1])
93
+ res.append(max_score)
94
+
95
+ res
96
+ # [('anger', 0.9745745062828064), ('love', 0.9884329438209534)]
97
+
98
+ ```
99
+
100
+ # Categories Explanation
101
+
102
+ <details>
103
+ <summary>Click to expand!</summary>
104
+
105
+ - OTHER: Responses that do not fit into any predefined categories or are outside the scope of the specific interaction types listed.
106
+
107
+ - agrees_praising_thanking: When the user agrees with the provided information, offers praise, or expresses gratitude.
108
+
109
+ - asks_source: The user requests the source of the information or the basis for the answer provided.
110
+
111
+ - continue: Indicates a prompt for the conversation to proceed or continue without a specific directional change.
112
+
113
+ - continue_or_finnish_code: Signals either to continue with the current line of discussion or code execution, or to conclude it.
114
+
115
+ - improve_or_modify_answer: The user requests an improvement or modification to the provided answer.
116
+
117
+ - lack_of_understandment: Reflects the user's or agent confusion or lack of understanding regarding the information provided.
118
+
119
+ - model_wrong_or_try_again: Indicates that the model's response was incorrect or unsatisfactory, suggesting a need to attempt another answer.
120
+
121
+ - more_listing_or_expand: The user requests further elaboration, expansion from the given list by the agent.
122
+
123
+ - repeat_answers_or_question: The need to reiterate a previous answer or question.
124
+
125
+ - request_example: The user asks for examples to better understand the concept or answer provided.
126
+
127
+ - user_complains_repetition: The user notes that the information or responses are repetitive, indicating a need for new or different content.
128
+
129
+ - user_doubts_answer: The user expresses skepticism or doubt regarding the accuracy or validity of the provided answer.
130
+
131
+ - user_goodbye: The user says goodbye to the agent.
132
+
133
+ - user_reminds_question: The user reiterates the question.
134
+
135
+ - user_wants_agent_to_answer: The user explicitly requests a response from the agent, when the agent refuses to do so.
136
+
137
+ - user_wants_explanation: The user seeks an explanation behind the information or answer provided.
138
+
139
+ - user_wants_more_detail: Indicates the user's desire for more comprehensive or detailed information on the topic.
140
+
141
+ - user_wants_shorter_longer_answer: The user requests that the answer be condensed or expanded to better meet their informational needs.
142
+
143
+ - user_wants_simplier_explanation: The user seeks a simpler, more easily understood explanation.
144
+
145
+ - user_wants_yes_or_no: The user is asking for a straightforward affirmative or negative answer, without additional detail or explanation.
146
+ </details>
147
+
148
+ <br>
149
+
150
+
151
+ # Metrics in our private test dataset
152
+ | Model (params) | Loss | Accuracy | F1 |
153
+ |--------------------|-------------|----------|--------|
154
+ | minuva/MiniLMv2-userflow-v2 (33M) | 0.6738 | 0.7236 | 0.7313 |
155
+ | minuva/MiniLMv2-userflow-v2-onnx (33M) | - | 0.7195 | 0.7189 |
156
+