metadata
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: deepseek-ai-deepseek-coder-1.3b-base-finetuned-defect-cwe-group-detection
results: []
deepseek-ai-deepseek-coder-1.3b-base-finetuned-defect-cwe-group-detection
This model is a fine-tuned version of deepseek-ai/deepseek-coder-1.3b-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6902
- Accuracy: 0.7715
- Precision: 0.8036
- Recall: 0.5867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 4711
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|
No log | 1.0 | 462 | 0.4904 | 0.7800 | 0.6028 | 0.5178 |
0.5739 | 2.0 | 925 | 0.4917 | 0.7985 | 0.8159 | 0.5552 |
0.3111 | 3.0 | 1387 | 0.6582 | 0.7918 | 0.7907 | 0.5901 |
0.2395 | 4.0 | 1850 | 0.6238 | 0.7800 | 0.8018 | 0.6132 |
0.2047 | 4.99 | 2310 | 0.6902 | 0.7715 | 0.8036 | 0.5867 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2