End of training
Browse files- README.md +19 -19
- model-00001-of-00002.safetensors +1 -1
- model-00002-of-00002.safetensors +1 -1
README.md
CHANGED
@@ -5,7 +5,6 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
-
- f1
|
9 |
- precision
|
10 |
- recall
|
11 |
model-index:
|
@@ -20,11 +19,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
-
|
26 |
-
-
|
27 |
-
- Recall: 0.7586
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -44,28 +42,30 @@ More information needed
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 2e-05
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 4711
|
50 |
-
- gradient_accumulation_steps:
|
51 |
- total_train_batch_size: 32
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
-
- num_epochs:
|
55 |
- mixed_precision_training: Native AMP
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
60 |
-
|
61 |
-
| No log | 1.0 | 462 | 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
|
|
|
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
-
- Transformers 4.
|
69 |
-
- Pytorch 2.
|
70 |
-
- Datasets 2.
|
71 |
-
- Tokenizers 0.15.
|
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- accuracy
|
|
|
8 |
- precision
|
9 |
- recall
|
10 |
model-index:
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6902
|
23 |
+
- Accuracy: 0.7715
|
24 |
+
- Precision: 0.8036
|
25 |
+
- Recall: 0.5867
|
|
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
- seed: 4711
|
48 |
+
- gradient_accumulation_steps: 4
|
49 |
- total_train_batch_size: 32
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 5
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|
|
59 |
+
| No log | 1.0 | 462 | 0.4904 | 0.7800 | 0.6028 | 0.5178 |
|
60 |
+
| 0.5739 | 2.0 | 925 | 0.4917 | 0.7985 | 0.8159 | 0.5552 |
|
61 |
+
| 0.3111 | 3.0 | 1387 | 0.6582 | 0.7918 | 0.7907 | 0.5901 |
|
62 |
+
| 0.2395 | 4.0 | 1850 | 0.6238 | 0.7800 | 0.8018 | 0.6132 |
|
63 |
+
| 0.2047 | 4.99 | 2310 | 0.6902 | 0.7715 | 0.8036 | 0.5867 |
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
+
- Transformers 4.38.1
|
69 |
+
- Pytorch 2.2.0+cu121
|
70 |
+
- Datasets 2.17.1
|
71 |
+
- Tokenizers 0.15.2
|
model-00001-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4986380064
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4517032bacda9d229aaec266da3b3315be027e458708b004757aa9f853307bde
|
3 |
size 4986380064
|
model-00002-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 135332592
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3346e3051767df587fa5782269d01bb45c6b1ca6dcf5479cd2ed922c3ddf08f6
|
3 |
size 135332592
|