Question Answering
Transformers
PyTorch
English
electra
Eval Results
Inference Endpoints
electra-large-synqa / README.md
autoevaluator's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
5426f69
|
raw
history blame
1.81 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - question-answering
datasets:
  - adversarial_qa
  - mbartolo/synQA
  - squad
metrics:
  - exact_match
  - f1
model-index:
  - name: mbartolo/electra-large-synqa
    results:
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad
          type: squad
          config: plain_text
          split: validation
        metrics:
          - type: exact_match
            value: 89.4158
            name: Exact Match
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzk4ZDNiZGE2YTYyMWZlOWZjMWVjNTFhNjZhNDkwZjQzN2QwNGZhZDViMDA5NTg5Yzc3ODQ1OGY2MzkwOGUxYSIsInZlcnNpb24iOjF9.1NIJWXAJEOwMj8hzyY847s3NPhFzQJNX6EDZS4UE_2ViLZu8HINwJcvqw_bnNI6lbuMPgrRIXr3Or2mPU67OAw
          - type: f1
            value: 94.7851
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmJjZTVjODZkNTA5ZThmZGQyODgwOWZlMzQ1MWViMjFjOTM1ODNkNTJhOGJhMzE0MTAxNDhiOWIyNmE0YWVhNyIsInZlcnNpb24iOjF9.fKCT4m04P5bl50PHXke63d8bwofIXLYlP-xRwen9f1Z0Y4tEzBVJzOr-1Z6SaTUUsmRAdhYu6ifL5u7ImlDyCw

Model Overview

This is an ELECTRA-Large QA Model trained from https://huggingface.co/google/electra-large-discriminator in two stages. First, it is trained on synthetic adversarial data generated using a BART-Large question generator, and then it is trained on SQuAD and AdversarialQA (https://arxiv.org/abs/2002.00293) in a second stage of fine-tuning.

Data

Training data: SQuAD + AdversarialQA Evaluation data: SQuAD + AdversarialQA

Training Process

Approx. 1 training epoch on the synthetic data and 2 training epochs on the manually-curated data.

Additional Information

Please refer to https://arxiv.org/abs/2104.08678 for full details. You can interact with the model on Dynabench here: https://dynabench.org/models/109