Question Answering
Transformers
PyTorch
English
electra
Eval Results
Inference Endpoints
File size: 1,812 Bytes
65fac8b
 
 
5426f69
65fac8b
 
 
 
 
 
 
 
 
c57ed3b
 
 
 
 
 
 
 
 
 
 
 
5426f69
c57ed3b
5426f69
c57ed3b
5426f69
 
c57ed3b
5426f69
c57ed3b
5426f69
65fac8b
 
14a5272
cc566fb
14a5272
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
language:
- en
license: apache-2.0
tags:
- question-answering
datasets:
- adversarial_qa
- mbartolo/synQA
- squad
metrics:
- exact_match
- f1
model-index:
- name: mbartolo/electra-large-synqa
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad
      type: squad
      config: plain_text
      split: validation
    metrics:
    - type: exact_match
      value: 89.4158
      name: Exact Match
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzk4ZDNiZGE2YTYyMWZlOWZjMWVjNTFhNjZhNDkwZjQzN2QwNGZhZDViMDA5NTg5Yzc3ODQ1OGY2MzkwOGUxYSIsInZlcnNpb24iOjF9.1NIJWXAJEOwMj8hzyY847s3NPhFzQJNX6EDZS4UE_2ViLZu8HINwJcvqw_bnNI6lbuMPgrRIXr3Or2mPU67OAw
    - type: f1
      value: 94.7851
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmJjZTVjODZkNTA5ZThmZGQyODgwOWZlMzQ1MWViMjFjOTM1ODNkNTJhOGJhMzE0MTAxNDhiOWIyNmE0YWVhNyIsInZlcnNpb24iOjF9.fKCT4m04P5bl50PHXke63d8bwofIXLYlP-xRwen9f1Z0Y4tEzBVJzOr-1Z6SaTUUsmRAdhYu6ifL5u7ImlDyCw
---

# Model Overview
This is an ELECTRA-Large QA Model trained from https://huggingface.co/google/electra-large-discriminator in two stages. First, it is trained on synthetic adversarial data generated using a BART-Large question generator, and then it is trained on SQuAD and AdversarialQA (https://arxiv.org/abs/2002.00293) in a second stage of fine-tuning.

# Data
Training data: SQuAD + AdversarialQA
Evaluation data: SQuAD + AdversarialQA

# Training Process
Approx. 1 training epoch on the synthetic data and 2 training epochs on the manually-curated data.

# Additional Information
Please refer to https://arxiv.org/abs/2104.08678 for full details. You can interact with the model on Dynabench here: https://dynabench.org/models/109