metadata
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: MiniLM-evidence-types
results: []
MiniLM-evidence-types
This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4011
- Macro f1: 0.3527
- Weighted f1: 0.6956
- Accuracy: 0.7177
- Balanced accuracy: 0.3299
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy |
---|---|---|---|---|---|---|---|
1.2992 | 1.0 | 250 | 1.1977 | 0.1984 | 0.6212 | 0.6979 | 0.2104 |
1.1076 | 2.0 | 500 | 1.0809 | 0.2865 | 0.6479 | 0.6986 | 0.2924 |
0.912 | 3.0 | 750 | 1.1359 | 0.2677 | 0.6718 | 0.6804 | 0.2882 |
0.7969 | 4.0 | 1000 | 1.1522 | 0.2643 | 0.6840 | 0.7047 | 0.2692 |
0.6313 | 5.0 | 1250 | 1.2438 | 0.3176 | 0.6856 | 0.6986 | 0.3149 |
0.542 | 6.0 | 1500 | 1.3582 | 0.3212 | 0.6736 | 0.6872 | 0.3173 |
0.4401 | 7.0 | 1750 | 1.4300 | 0.3472 | 0.6921 | 0.7024 | 0.3305 |
0.382 | 8.0 | 2000 | 1.5530 | 0.3669 | 0.6965 | 0.7146 | 0.3480 |
0.309 | 9.0 | 2250 | 1.7972 | 0.3390 | 0.6777 | 0.6986 | 0.3174 |
0.2762 | 10.0 | 2500 | 1.7713 | 0.3745 | 0.6923 | 0.7161 | 0.3396 |
0.242 | 11.0 | 2750 | 1.9214 | 0.3672 | 0.6982 | 0.7215 | 0.3373 |
0.2112 | 12.0 | 3000 | 1.9624 | 0.3543 | 0.6917 | 0.7093 | 0.3310 |
0.179 | 13.0 | 3250 | 2.0087 | 0.3658 | 0.6922 | 0.7078 | 0.3431 |
0.1563 | 14.0 | 3500 | 2.1266 | 0.3554 | 0.7016 | 0.7237 | 0.3331 |
0.1531 | 15.0 | 3750 | 2.2341 | 0.3479 | 0.6951 | 0.7123 | 0.3284 |
0.115 | 16.0 | 4000 | 2.2671 | 0.3565 | 0.6970 | 0.7207 | 0.3308 |
0.115 | 17.0 | 4250 | 2.3446 | 0.3547 | 0.6988 | 0.7199 | 0.3342 |
0.0931 | 18.0 | 4500 | 2.3784 | 0.3570 | 0.6977 | 0.7169 | 0.3333 |
0.0886 | 19.0 | 4750 | 2.3871 | 0.3557 | 0.6970 | 0.7169 | 0.3325 |
0.0747 | 20.0 | 5000 | 2.4011 | 0.3527 | 0.6956 | 0.7177 | 0.3299 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1