marieke93's picture
update model card README.md
7262c26
|
raw
history blame
3.64 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: MiniLM-evidence-types
    results: []

MiniLM-evidence-types

This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4011
  • Macro f1: 0.3527
  • Weighted f1: 0.6956
  • Accuracy: 0.7177
  • Balanced accuracy: 0.3299

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Macro f1 Weighted f1 Accuracy Balanced accuracy
1.2992 1.0 250 1.1977 0.1984 0.6212 0.6979 0.2104
1.1076 2.0 500 1.0809 0.2865 0.6479 0.6986 0.2924
0.912 3.0 750 1.1359 0.2677 0.6718 0.6804 0.2882
0.7969 4.0 1000 1.1522 0.2643 0.6840 0.7047 0.2692
0.6313 5.0 1250 1.2438 0.3176 0.6856 0.6986 0.3149
0.542 6.0 1500 1.3582 0.3212 0.6736 0.6872 0.3173
0.4401 7.0 1750 1.4300 0.3472 0.6921 0.7024 0.3305
0.382 8.0 2000 1.5530 0.3669 0.6965 0.7146 0.3480
0.309 9.0 2250 1.7972 0.3390 0.6777 0.6986 0.3174
0.2762 10.0 2500 1.7713 0.3745 0.6923 0.7161 0.3396
0.242 11.0 2750 1.9214 0.3672 0.6982 0.7215 0.3373
0.2112 12.0 3000 1.9624 0.3543 0.6917 0.7093 0.3310
0.179 13.0 3250 2.0087 0.3658 0.6922 0.7078 0.3431
0.1563 14.0 3500 2.1266 0.3554 0.7016 0.7237 0.3331
0.1531 15.0 3750 2.2341 0.3479 0.6951 0.7123 0.3284
0.115 16.0 4000 2.2671 0.3565 0.6970 0.7207 0.3308
0.115 17.0 4250 2.3446 0.3547 0.6988 0.7199 0.3342
0.0931 18.0 4500 2.3784 0.3570 0.6977 0.7169 0.3333
0.0886 19.0 4750 2.3871 0.3557 0.6970 0.7169 0.3325
0.0747 20.0 5000 2.4011 0.3527 0.6956 0.7177 0.3299

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1