update model card README.md
Browse files
README.md
CHANGED
@@ -16,11 +16,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss:
|
20 |
-
- Macro f1: 0.
|
21 |
-
- Weighted f1: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
-
- Balanced accuracy: 0.
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -39,7 +39,7 @@ More information needed
|
|
39 |
### Training hyperparameters
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
-
- learning_rate:
|
43 |
- train_batch_size: 16
|
44 |
- eval_batch_size: 16
|
45 |
- seed: 42
|
@@ -52,26 +52,26 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:|
|
55 |
-
| 1.
|
56 |
-
| 1.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.4011
|
20 |
+
- Macro f1: 0.3527
|
21 |
+
- Weighted f1: 0.6956
|
22 |
+
- Accuracy: 0.7177
|
23 |
+
- Balanced accuracy: 0.3299
|
24 |
|
25 |
## Model description
|
26 |
|
|
|
39 |
### Training hyperparameters
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 5e-05
|
43 |
- train_batch_size: 16
|
44 |
- eval_batch_size: 16
|
45 |
- seed: 42
|
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:|
|
55 |
+
| 1.2992 | 1.0 | 250 | 1.1977 | 0.1984 | 0.6212 | 0.6979 | 0.2104 |
|
56 |
+
| 1.1076 | 2.0 | 500 | 1.0809 | 0.2865 | 0.6479 | 0.6986 | 0.2924 |
|
57 |
+
| 0.912 | 3.0 | 750 | 1.1359 | 0.2677 | 0.6718 | 0.6804 | 0.2882 |
|
58 |
+
| 0.7969 | 4.0 | 1000 | 1.1522 | 0.2643 | 0.6840 | 0.7047 | 0.2692 |
|
59 |
+
| 0.6313 | 5.0 | 1250 | 1.2438 | 0.3176 | 0.6856 | 0.6986 | 0.3149 |
|
60 |
+
| 0.542 | 6.0 | 1500 | 1.3582 | 0.3212 | 0.6736 | 0.6872 | 0.3173 |
|
61 |
+
| 0.4401 | 7.0 | 1750 | 1.4300 | 0.3472 | 0.6921 | 0.7024 | 0.3305 |
|
62 |
+
| 0.382 | 8.0 | 2000 | 1.5530 | 0.3669 | 0.6965 | 0.7146 | 0.3480 |
|
63 |
+
| 0.309 | 9.0 | 2250 | 1.7972 | 0.3390 | 0.6777 | 0.6986 | 0.3174 |
|
64 |
+
| 0.2762 | 10.0 | 2500 | 1.7713 | 0.3745 | 0.6923 | 0.7161 | 0.3396 |
|
65 |
+
| 0.242 | 11.0 | 2750 | 1.9214 | 0.3672 | 0.6982 | 0.7215 | 0.3373 |
|
66 |
+
| 0.2112 | 12.0 | 3000 | 1.9624 | 0.3543 | 0.6917 | 0.7093 | 0.3310 |
|
67 |
+
| 0.179 | 13.0 | 3250 | 2.0087 | 0.3658 | 0.6922 | 0.7078 | 0.3431 |
|
68 |
+
| 0.1563 | 14.0 | 3500 | 2.1266 | 0.3554 | 0.7016 | 0.7237 | 0.3331 |
|
69 |
+
| 0.1531 | 15.0 | 3750 | 2.2341 | 0.3479 | 0.6951 | 0.7123 | 0.3284 |
|
70 |
+
| 0.115 | 16.0 | 4000 | 2.2671 | 0.3565 | 0.6970 | 0.7207 | 0.3308 |
|
71 |
+
| 0.115 | 17.0 | 4250 | 2.3446 | 0.3547 | 0.6988 | 0.7199 | 0.3342 |
|
72 |
+
| 0.0931 | 18.0 | 4500 | 2.3784 | 0.3570 | 0.6977 | 0.7169 | 0.3333 |
|
73 |
+
| 0.0886 | 19.0 | 4750 | 2.3871 | 0.3557 | 0.6970 | 0.7169 | 0.3325 |
|
74 |
+
| 0.0747 | 20.0 | 5000 | 2.4011 | 0.3527 | 0.6956 | 0.7177 | 0.3299 |
|
75 |
|
76 |
|
77 |
### Framework versions
|