|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conllpp |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: roberta-large-md-conllpp |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conllpp |
|
type: conllpp |
|
config: conllpp |
|
split: train |
|
args: conllpp |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9971177780689113 |
|
- name: Recall |
|
type: recall |
|
value: 0.9968043586452576 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9969610437242934 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.995003768708948 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-large-md-conllpp |
|
|
|
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the conllpp dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0457 |
|
- Precision: 0.9971 |
|
- Recall: 0.9968 |
|
- F1: 0.9970 |
|
- Accuracy: 0.9950 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0748 | 1.0 | 878 | 0.0309 | 0.9959 | 0.9962 | 0.9961 | 0.9935 | |
|
| 0.0111 | 2.0 | 1756 | 0.0346 | 0.9974 | 0.9967 | 0.9970 | 0.9951 | |
|
| 0.0057 | 3.0 | 2634 | 0.0348 | 0.9974 | 0.9960 | 0.9967 | 0.9946 | |
|
| 0.0031 | 4.0 | 3512 | 0.0434 | 0.9976 | 0.9964 | 0.9970 | 0.9951 | |
|
| 0.0017 | 5.0 | 4390 | 0.0457 | 0.9971 | 0.9968 | 0.9970 | 0.9950 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.2 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|