luffycodes commited on
Commit
6989349
·
1 Parent(s): 19e11a4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - conllpp
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: roberta-large-md-conllpp
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conllpp
20
+ type: conllpp
21
+ config: conllpp
22
+ split: train
23
+ args: conllpp
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9971177780689113
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9968043586452576
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9969610437242934
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.995003768708948
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # roberta-large-md-conllpp
43
+
44
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the conllpp dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0457
47
+ - Precision: 0.9971
48
+ - Recall: 0.9968
49
+ - F1: 0.9970
50
+ - Accuracy: 0.9950
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 5
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0748 | 1.0 | 878 | 0.0309 | 0.9959 | 0.9962 | 0.9961 | 0.9935 |
82
+ | 0.0111 | 2.0 | 1756 | 0.0346 | 0.9974 | 0.9967 | 0.9970 | 0.9951 |
83
+ | 0.0057 | 3.0 | 2634 | 0.0348 | 0.9974 | 0.9960 | 0.9967 | 0.9946 |
84
+ | 0.0031 | 4.0 | 3512 | 0.0434 | 0.9976 | 0.9964 | 0.9970 | 0.9951 |
85
+ | 0.0017 | 5.0 | 4390 | 0.0457 | 0.9971 | 0.9968 | 0.9970 | 0.9950 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.21.2
91
+ - Pytorch 1.12.1
92
+ - Datasets 2.4.0
93
+ - Tokenizers 0.12.1