ko-albert-base-v1 / README.md
lots-o's picture
Update README.md
598f4c7 verified
|
raw
history blame
4.89 kB
metadata
license: apache-2.0
language:
  - ko

Korean ALBERT

Dataset

Evaluation results

Size(용량) Average Score NSMC
(acc)
Naver NER
(F1)
PAWS
(acc)
KorNLI
(acc)
KorSTS
(spearman)
Question Pair
(acc)
KorQuaD (Dev)
(EM/F1)
KcELECTRA-base 475M 84.84 91.71 86.90 74.80 81.65 82.65 95.78 70.60 / 90.11
KcELECTRA-base-v2022 475M 85.20 91.97 87.35 76.50 82.12 83.67 95.12 69.00 / 90.40
KcBERT-Base 417M 79.65 89.62 84.34 66.95 74.85 75.57 93.93 60.25 / 84.39
KcBERT-Large 1.2G 81.33 90.68 85.53 70.15 76.99 77.49 94.06 62.16 / 86.64
KoBERT 351M 82.21 89.63 86.11 80.65 79.00 79.64 93.93 52.81 / 80.27
XLM-Roberta-Base 1.03G 84.01 89.49 86.26 82.95 79.92 79.09 93.53 64.70 / 88.94
HanBERT 614M 86.24 90.16 87.31 82.40 80.89 83.33 94.19 78.74 / 92.02
KoELECTRA-Base 423M 84.66 90.21 86.87 81.90 80.85 83.21 94.20 61.10 / 89.59
KoELECTRA-Base-v2 423M 86.96 89.70 87.02 83.90 80.61 84.30 94.72 84.34 / 92.58
DistilKoBERT 108M 76.76 88.41 84.13 62.55 70.55 73.21 92.48 54.12 / 77.80
ko-albert-base-v1 51M 80.46 86.83 82.26 69.95 74.17 74.48 94.06 76.08 / 86.82
ko-albert-large-v1 75M 82.39 86.91 83.12 76.10 76.01 77.46 94.33 77.64 / 87.99

*The size of HanBERT is the sum of the BERT model and the tokenizer DB.

*These results were obtained using the default configuration settings. Better performance may be achieved with additional hyperparameter tuning.

How to use

from transformers import AutoTokenizer, AutoModel

# Base Model (51M)
tokenizer = AutoTokenizer.from_pretrained("lots-o/ko-albert-base-v1")
model = AutoModel.from_pretrained("lots-o/ko-albert-base-v1")

# Large Model (75M)
tokenizer = AutoTokenizer.from_pretrained("lots-o/ko-albert-large-v1")
model = AutoModel.from_pretrained("lots-o/ko-albert-large-v1")

Acknowledgement

  • The GCP/TPU environment used for training the ALBERT Model was supported by the TRC program.

Reference

Paper

Github Repos