Korean ALBERT

Dataset

Evaluation results

Size(용량) Average Score NSMC
(acc)
Naver NER
(F1)
PAWS
(acc)
KorNLI
(acc)
KorSTS
(spearman)
Question Pair
(acc)
KorQuaD (Dev)
(EM/F1)
KcELECTRA-base 475M 84.84 91.71 86.90 74.80 81.65 82.65 95.78 70.60 / 90.11
KcELECTRA-base-v2022 475M 85.20 91.97 87.35 76.50 82.12 83.67 95.12 69.00 / 90.40
KcBERT-Base 417M 79.65 89.62 84.34 66.95 74.85 75.57 93.93 60.25 / 84.39
KcBERT-Large 1.2G 81.33 90.68 85.53 70.15 76.99 77.49 94.06 62.16 / 86.64
KoBERT 351M 82.21 89.63 86.11 80.65 79.00 79.64 93.93 52.81 / 80.27
XLM-Roberta-Base 1.03G 84.01 89.49 86.26 82.95 79.92 79.09 93.53 64.70 / 88.94
HanBERT 614M 86.24 90.16 87.31 82.40 80.89 83.33 94.19 78.74 / 92.02
KoELECTRA-Base 423M 84.66 90.21 86.87 81.90 80.85 83.21 94.20 61.10 / 89.59
KoELECTRA-Base-v2 423M 86.96 89.70 87.02 83.90 80.61 84.30 94.72 84.34 / 92.58
DistilKoBERT 108M 76.76 88.41 84.13 62.55 70.55 73.21 92.48 54.12 / 77.80
ko-albert-base-v1 51M 80.46 86.83 82.26 69.95 74.17 74.48 94.06 76.08 / 86.82
ko-albert-large-v1 75M 82.39 86.91 83.12 76.10 76.01 77.46 94.33 77.64 / 87.99

*The size of HanBERT is the sum of the BERT model and the tokenizer DB.

*These results were obtained using the default configuration settings. Better performance may be achieved with additional hyperparameter tuning.

How to use

from transformers import AutoTokenizer, AutoModel

# Base Model (51M)
tokenizer = AutoTokenizer.from_pretrained("lots-o/ko-albert-base-v1")
model = AutoModel.from_pretrained("lots-o/ko-albert-base-v1")

# Large Model (75M)
tokenizer = AutoTokenizer.from_pretrained("lots-o/ko-albert-large-v1")
model = AutoModel.from_pretrained("lots-o/ko-albert-large-v1")

Acknowledgement

  • The GCP/TPU environment used for training the ALBERT Model was supported by the TRC program.

Reference

Paper

Github Repos

Downloads last month
26
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.