metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: it
datasets:
- lmqg/qg_itquad
pipeline_tag: text2text-generation
tags:
- question generation
- answer extraction
widget:
- text: >-
generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare
i prezzi per riflettere tale deprezzamento.
example_title: Question Generation Example 1
- text: >-
generate question: L' individuazione del petrolio e lo sviluppo di nuovi
giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di
una produzione significativa.
example_title: Question Generation Example 2
- text: >-
generate question: il <hl> Giappone <hl> è stato il paese più dipendente
dal petrolio arabo.
example_title: Question Generation Example 3
- text: >-
extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il
sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su
Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto
arabo-israeliano ha liberato la pressione economica sottostante sui prezzi
del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di
petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo
scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del
petrolio] sta andando a salire Certamente! E come! Avete[Paesi
occidentali] aumentato il prezzo del grano che ci vendete del 300 per
cento, e lo stesso per zucchero e cemento.
example_title: Answer Extraction Example 1
- text: >-
extract answers: <hl> Furono introdotti autocarri compatti, come la Toyota
Hilux e il Datsun Truck, seguiti dal camion Mazda (venduto come il Ford
Courier), e l' Isuzu costruito Chevrolet LUV. <hl> Mitsubishi rebranded il
suo Forte come Dodge D-50 pochi anni dopo la crisi petrolifera. Mazda,
Mitsubishi e Isuzu avevano partnership congiunte rispettivamente con Ford,
Chrysler e GM. In seguito i produttori americani introdussero le loro
sostituzioni nazionali (Ford Ranger, Dodge Dakota e la Chevrolet S10/GMC
S-15), ponendo fine alla loro politica di importazione vincolata.
example_title: Answer Extraction Example 2
model-index:
- name: lmqg/mt5-small-itquad-qg-ae
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_itquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 7.25
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 21.84
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 17.5
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 80.61
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 56.63
- name: BLEU4 (Question & Answer Generation (with Gold Answer))
type: bleu4_question_answer_generation_with_gold_answer
value: 3.54
- name: ROUGE-L (Question & Answer Generation (with Gold Answer))
type: rouge_l_question_answer_generation_with_gold_answer
value: 23.48
- name: METEOR (Question & Answer Generation (with Gold Answer))
type: meteor_question_answer_generation_with_gold_answer
value: 24.38
- name: BERTScore (Question & Answer Generation (with Gold Answer))
type: bertscore_question_answer_generation_with_gold_answer
value: 77.25
- name: MoverScore (Question & Answer Generation (with Gold Answer))
type: moverscore_question_answer_generation_with_gold_answer
value: 54.65
- name: >-
QAAlignedF1Score-BERTScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
value: 81.81
- name: >-
QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold
Answer))
type: >-
qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
value: 82.51
- name: >-
QAAlignedPrecision-BERTScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
value: 81.17
- name: >-
QAAlignedF1Score-MoverScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
value: 56.02
- name: >-
QAAlignedRecall-MoverScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
value: 56.32
- name: >-
QAAlignedPrecision-MoverScore (Question & Answer Generation (with
Gold Answer))
type: >-
qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
value: 55.76
- name: BLEU4 (Answer Extraction)
type: bleu4_answer_extraction
value: 26.01
- name: ROUGE-L (Answer Extraction)
type: rouge_l_answer_extraction
value: 45.15
- name: METEOR (Answer Extraction)
type: meteor_answer_extraction
value: 42.68
- name: BERTScore (Answer Extraction)
type: bertscore_answer_extraction
value: 90.24
- name: MoverScore (Answer Extraction)
type: moverscore_answer_extraction
value: 81.17
- name: AnswerF1Score (Answer Extraction)
type: answer_f1_score__answer_extraction
value: 72.09
- name: AnswerExactMatch (Answer Extraction)
type: answer_exact_match_answer_extraction
value: 57.85
Model Card of lmqg/mt5-small-itquad-qg-ae
This model is fine-tuned version of google/mt5-small for question generation and answer extraction jointly on the lmqg/qg_itquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-small
- Language: it
- Training data: lmqg/qg_itquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="it", model="lmqg/mt5-small-itquad-qg-ae")
# model prediction
question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-itquad-qg-ae")
# answer extraction
answer = pipe("generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
# question generation
question = pipe("extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 80.61 | default | lmqg/qg_itquad |
Bleu_1 | 22.53 | default | lmqg/qg_itquad |
Bleu_2 | 14.75 | default | lmqg/qg_itquad |
Bleu_3 | 10.19 | default | lmqg/qg_itquad |
Bleu_4 | 7.25 | default | lmqg/qg_itquad |
METEOR | 17.5 | default | lmqg/qg_itquad |
MoverScore | 56.63 | default | lmqg/qg_itquad |
ROUGE_L | 21.84 | default | lmqg/qg_itquad |
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 77.25 | default | lmqg/qg_itquad |
Bleu_1 | 23.88 | default | lmqg/qg_itquad |
Bleu_2 | 13.37 | default | lmqg/qg_itquad |
Bleu_3 | 6.51 | default | lmqg/qg_itquad |
Bleu_4 | 3.54 | default | lmqg/qg_itquad |
METEOR | 24.38 | default | lmqg/qg_itquad |
MoverScore | 54.65 | default | lmqg/qg_itquad |
QAAlignedF1Score (BERTScore) | 81.81 | default | lmqg/qg_itquad |
QAAlignedF1Score (MoverScore) | 56.02 | default | lmqg/qg_itquad |
QAAlignedPrecision (BERTScore) | 81.17 | default | lmqg/qg_itquad |
QAAlignedPrecision (MoverScore) | 55.76 | default | lmqg/qg_itquad |
QAAlignedRecall (BERTScore) | 82.51 | default | lmqg/qg_itquad |
QAAlignedRecall (MoverScore) | 56.32 | default | lmqg/qg_itquad |
ROUGE_L | 23.48 | default | lmqg/qg_itquad |
- Metric (Answer Extraction): raw metric file
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 57.85 | default | lmqg/qg_itquad |
AnswerF1Score | 72.09 | default | lmqg/qg_itquad |
BERTScore | 90.24 | default | lmqg/qg_itquad |
Bleu_1 | 39.33 | default | lmqg/qg_itquad |
Bleu_2 | 33.64 | default | lmqg/qg_itquad |
Bleu_3 | 29.59 | default | lmqg/qg_itquad |
Bleu_4 | 26.01 | default | lmqg/qg_itquad |
METEOR | 42.68 | default | lmqg/qg_itquad |
MoverScore | 81.17 | default | lmqg/qg_itquad |
ROUGE_L | 45.15 | default | lmqg/qg_itquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_itquad
- dataset_name: default
- input_types: ['paragraph_answer', 'paragraph_sentence']
- output_types: ['question', 'answer']
- prefix_types: ['qg', 'ae']
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 13
- batch: 16
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}