File size: 13,883 Bytes
158c81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf2a6e
158c81d
6cf2a6e
158c81d
 
6cf2a6e
158c81d
 
 
 
 
 
 
 
 
6cf2a6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a261b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf2a6e
e9a261b
 
6cf2a6e
e9a261b
 
6cf2a6e
e9a261b
 
6cf2a6e
e9a261b
 
6cf2a6e
e9a261b
 
6cf2a6e
e85afd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158c81d
 
6cf2a6e
 
158c81d
c89fb79
158c81d
 
 
 
 
 
ec81a6a
158c81d
 
ec81a6a
158c81d
ec81a6a
6cf2a6e
ec81a6a
6cf2a6e
 
ec81a6a
6cf2a6e
158c81d
ec81a6a
158c81d
ec81a6a
 
 
6cf2a6e
 
 
ec81a6a
6cf2a6e
 
ec81a6a
6cf2a6e
c89fb79
158c81d
 
6cf2a6e
158c81d
 
6cf2a6e
158c81d
6cf2a6e
 
 
 
 
 
 
 
 
 
158c81d
 
6cf2a6e
976d33f
6cf2a6e
 
e9a261b
 
 
 
 
 
 
6cf2a6e
 
 
 
 
 
e9a261b
976d33f
158c81d
e85afd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158c81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf2a6e
158c81d
 
ec81a6a
c89fb79
ec81a6a
c89fb79
ec81a6a
c89fb79
 
 
 
 
 
 
 
ec81a6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: it
datasets:
- lmqg/qg_itquad
pipeline_tag: text2text-generation
tags:
- question generation
- answer extraction
widget:
- text: "generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."
  example_title: "Question Generation Example 1" 
- text: "generate question: L' individuazione del petrolio e lo sviluppo di nuovi giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una produzione significativa."
  example_title: "Question Generation Example 2" 
- text: "generate question: il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo."
  example_title: "Question Generation Example 3" 
- text: "extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento."
  example_title: "Answer Extraction Example 1" 
- text: "extract answers: <hl> Furono introdotti autocarri compatti, come la Toyota Hilux e il Datsun Truck, seguiti dal camion Mazda (venduto come il Ford Courier), e l' Isuzu costruito Chevrolet LUV. <hl> Mitsubishi rebranded il suo Forte come Dodge D-50 pochi anni dopo la crisi petrolifera. Mazda, Mitsubishi e Isuzu avevano partnership congiunte rispettivamente con Ford, Chrysler e GM. In seguito i produttori americani introdussero le loro sostituzioni nazionali (Ford Ranger, Dodge Dakota e la Chevrolet S10/GMC S-15), ponendo fine alla loro politica di importazione vincolata."
  example_title: "Answer Extraction Example 2" 
model-index:
- name: lmqg/mt5-small-itquad-qg-ae
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_itquad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 7.25
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 21.84
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 17.5
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 80.61
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 56.63
    - name: BLEU4 (Question & Answer Generation (with Gold Answer))
      type: bleu4_question_answer_generation_with_gold_answer
      value: 3.54
    - name: ROUGE-L (Question & Answer Generation (with Gold Answer))
      type: rouge_l_question_answer_generation_with_gold_answer
      value: 23.48
    - name: METEOR (Question & Answer Generation (with Gold Answer))
      type: meteor_question_answer_generation_with_gold_answer
      value: 24.38
    - name: BERTScore (Question & Answer Generation (with Gold Answer))
      type: bertscore_question_answer_generation_with_gold_answer
      value: 77.25
    - name: MoverScore (Question & Answer Generation (with Gold Answer))
      type: moverscore_question_answer_generation_with_gold_answer
      value: 54.65
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
      value: 81.81
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
      value: 82.51
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
      value: 81.17
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
      value: 56.02
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
      value: 56.32
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
      value: 55.76
    - name: BLEU4 (Answer Extraction)
      type: bleu4_answer_extraction
      value: 26.01
    - name: ROUGE-L (Answer Extraction)
      type: rouge_l_answer_extraction
      value: 45.15
    - name: METEOR (Answer Extraction)
      type: meteor_answer_extraction
      value: 42.68
    - name: BERTScore (Answer Extraction)
      type: bertscore_answer_extraction
      value: 90.24
    - name: MoverScore (Answer Extraction)
      type: moverscore_answer_extraction
      value: 81.17
    - name: AnswerF1Score (Answer Extraction)
      type: answer_f1_score__answer_extraction
      value: 72.09
    - name: AnswerExactMatch (Answer Extraction)
      type: answer_exact_match_answer_extraction
      value: 57.85
---

# Model Card of `lmqg/mt5-small-itquad-qg-ae`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation and answer extraction jointly on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)   
- **Language:** it  
- **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="it", model="lmqg/mt5-small-itquad-qg-ae")

# model prediction
question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-itquad-qg-ae")

# answer extraction
answer = pipe("generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")

# question generation
question = pipe("extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   80.61 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_1     |   22.53 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_2     |   14.75 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_3     |   10.19 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_4     |    7.25 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| METEOR     |   17.5  | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| MoverScore |   56.63 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| ROUGE_L    |   21.84 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |


- ***Metric (Question & Answer Generation)***:  [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore                       |   77.25 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_1                          |   23.88 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_2                          |   13.37 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_3                          |    6.51 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_4                          |    3.54 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| METEOR                          |   24.38 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| MoverScore                      |   54.65 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedF1Score (BERTScore)    |   81.81 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedF1Score (MoverScore)   |   56.02 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedPrecision (BERTScore)  |   81.17 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedPrecision (MoverScore) |   55.76 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedRecall (BERTScore)     |   82.51 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedRecall (MoverScore)    |   56.32 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| ROUGE_L                         |   23.48 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |


- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json)

|                  |   Score | Type    | Dataset                                                          |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
| AnswerExactMatch |   57.85 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| AnswerF1Score    |   72.09 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| BERTScore        |   90.24 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_1           |   39.33 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_2           |   33.64 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_3           |   29.59 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_4           |   26.01 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| METEOR           |   42.68 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| MoverScore       |   81.17 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| ROUGE_L          |   45.15 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_itquad
 - dataset_name: default
 - input_types: ['paragraph_answer', 'paragraph_sentence']
 - output_types: ['question', 'answer']
 - prefix_types: ['qg', 'ae']
 - model: google/mt5-small
 - max_length: 512
 - max_length_output: 32
 - epoch: 13
 - batch: 16
 - lr: 0.001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 4
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```