xiaobu-embedding-v2 / README.md
80372146
init commit
1878ca3
|
raw
history blame
26 kB
metadata
tags:
  - mteb
model-index:
  - name: piccolo-embedding_mixed2
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 56.918538280469875
          - type: cos_sim_spearman
            value: 60.95597435855258
          - type: euclidean_pearson
            value: 59.73821610051437
          - type: euclidean_spearman
            value: 60.956778530262454
          - type: manhattan_pearson
            value: 59.739675774225475
          - type: manhattan_spearman
            value: 60.95243600302903
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 56.79417977023184
          - type: cos_sim_spearman
            value: 58.80984726256814
          - type: euclidean_pearson
            value: 63.42225182281334
          - type: euclidean_spearman
            value: 58.80957930593542
          - type: manhattan_pearson
            value: 63.41128425333986
          - type: manhattan_spearman
            value: 58.80784321716389
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 50.074000000000005
          - type: f1
            value: 47.11468271375511
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 73.3412976021806
          - type: cos_sim_spearman
            value: 75.0799965464816
          - type: euclidean_pearson
            value: 73.7874729086686
          - type: euclidean_spearman
            value: 75.07910973646369
          - type: manhattan_pearson
            value: 73.7716616949607
          - type: manhattan_spearman
            value: 75.06089549008017
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 60.4206935177474
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 49.53654617222264
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 90.96386786978509
          - type: mrr
            value: 92.8897619047619
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 90.41014127763198
          - type: mrr
            value: 92.45039682539682
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.901999999999997
          - type: map_at_10
            value: 40.321
          - type: map_at_100
            value: 42.176
          - type: map_at_1000
            value: 42.282
          - type: map_at_3
            value: 35.882
          - type: map_at_5
            value: 38.433
          - type: mrr_at_1
            value: 40.910000000000004
          - type: mrr_at_10
            value: 49.309999999999995
          - type: mrr_at_100
            value: 50.239
          - type: mrr_at_1000
            value: 50.278
          - type: mrr_at_3
            value: 46.803
          - type: mrr_at_5
            value: 48.137
          - type: ndcg_at_1
            value: 40.785
          - type: ndcg_at_10
            value: 47.14
          - type: ndcg_at_100
            value: 54.156000000000006
          - type: ndcg_at_1000
            value: 55.913999999999994
          - type: ndcg_at_3
            value: 41.669
          - type: ndcg_at_5
            value: 43.99
          - type: precision_at_1
            value: 40.785
          - type: precision_at_10
            value: 10.493
          - type: precision_at_100
            value: 1.616
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 23.723
          - type: precision_at_5
            value: 17.249
          - type: recall_at_1
            value: 26.901999999999997
          - type: recall_at_10
            value: 58.25
          - type: recall_at_100
            value: 87.10900000000001
          - type: recall_at_1000
            value: 98.804
          - type: recall_at_3
            value: 41.804
          - type: recall_at_5
            value: 48.884
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 86.42212868310283
          - type: cos_sim_ap
            value: 92.83788702972741
          - type: cos_sim_f1
            value: 87.08912233141307
          - type: cos_sim_precision
            value: 84.24388111888112
          - type: cos_sim_recall
            value: 90.13327098433481
          - type: dot_accuracy
            value: 86.44618159951895
          - type: dot_ap
            value: 92.81146275060858
          - type: dot_f1
            value: 87.06857911250562
          - type: dot_precision
            value: 83.60232408005164
          - type: dot_recall
            value: 90.83469721767594
          - type: euclidean_accuracy
            value: 86.42212868310283
          - type: euclidean_ap
            value: 92.83805700492603
          - type: euclidean_f1
            value: 87.08803611738148
          - type: euclidean_precision
            value: 84.18066768492254
          - type: euclidean_recall
            value: 90.20341360766892
          - type: manhattan_accuracy
            value: 86.28983764281419
          - type: manhattan_ap
            value: 92.82818970981005
          - type: manhattan_f1
            value: 87.12625521832335
          - type: manhattan_precision
            value: 84.19101613606628
          - type: manhattan_recall
            value: 90.27355623100304
          - type: max_accuracy
            value: 86.44618159951895
          - type: max_ap
            value: 92.83805700492603
          - type: max_f1
            value: 87.12625521832335
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 79.215
          - type: map_at_10
            value: 86.516
          - type: map_at_100
            value: 86.6
          - type: map_at_1000
            value: 86.602
          - type: map_at_3
            value: 85.52
          - type: map_at_5
            value: 86.136
          - type: mrr_at_1
            value: 79.663
          - type: mrr_at_10
            value: 86.541
          - type: mrr_at_100
            value: 86.625
          - type: mrr_at_1000
            value: 86.627
          - type: mrr_at_3
            value: 85.564
          - type: mrr_at_5
            value: 86.15899999999999
          - type: ndcg_at_1
            value: 79.663
          - type: ndcg_at_10
            value: 89.399
          - type: ndcg_at_100
            value: 89.727
          - type: ndcg_at_1000
            value: 89.781
          - type: ndcg_at_3
            value: 87.402
          - type: ndcg_at_5
            value: 88.479
          - type: precision_at_1
            value: 79.663
          - type: precision_at_10
            value: 9.926
          - type: precision_at_100
            value: 1.006
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 31.226
          - type: precision_at_5
            value: 19.283
          - type: recall_at_1
            value: 79.215
          - type: recall_at_10
            value: 98.209
          - type: recall_at_100
            value: 99.579
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 92.703
          - type: recall_at_5
            value: 95.364
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 27.391
          - type: map_at_10
            value: 82.82000000000001
          - type: map_at_100
            value: 85.5
          - type: map_at_1000
            value: 85.533
          - type: map_at_3
            value: 57.802
          - type: map_at_5
            value: 72.82600000000001
          - type: mrr_at_1
            value: 92.80000000000001
          - type: mrr_at_10
            value: 94.83500000000001
          - type: mrr_at_100
            value: 94.883
          - type: mrr_at_1000
            value: 94.884
          - type: mrr_at_3
            value: 94.542
          - type: mrr_at_5
            value: 94.729
          - type: ndcg_at_1
            value: 92.7
          - type: ndcg_at_10
            value: 89.435
          - type: ndcg_at_100
            value: 91.78699999999999
          - type: ndcg_at_1000
            value: 92.083
          - type: ndcg_at_3
            value: 88.595
          - type: ndcg_at_5
            value: 87.53
          - type: precision_at_1
            value: 92.7
          - type: precision_at_10
            value: 42.4
          - type: precision_at_100
            value: 4.823
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 79.133
          - type: precision_at_5
            value: 66.8
          - type: recall_at_1
            value: 27.391
          - type: recall_at_10
            value: 90.069
          - type: recall_at_100
            value: 97.875
          - type: recall_at_1000
            value: 99.436
          - type: recall_at_3
            value: 59.367999999999995
          - type: recall_at_5
            value: 76.537
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 54.800000000000004
          - type: map_at_10
            value: 65.289
          - type: map_at_100
            value: 65.845
          - type: map_at_1000
            value: 65.853
          - type: map_at_3
            value: 62.766999999999996
          - type: map_at_5
            value: 64.252
          - type: mrr_at_1
            value: 54.800000000000004
          - type: mrr_at_10
            value: 65.255
          - type: mrr_at_100
            value: 65.81700000000001
          - type: mrr_at_1000
            value: 65.824
          - type: mrr_at_3
            value: 62.683
          - type: mrr_at_5
            value: 64.248
          - type: ndcg_at_1
            value: 54.800000000000004
          - type: ndcg_at_10
            value: 70.498
          - type: ndcg_at_100
            value: 72.82300000000001
          - type: ndcg_at_1000
            value: 73.053
          - type: ndcg_at_3
            value: 65.321
          - type: ndcg_at_5
            value: 67.998
          - type: precision_at_1
            value: 54.800000000000004
          - type: precision_at_10
            value: 8.690000000000001
          - type: precision_at_100
            value: 0.97
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 24.233
          - type: precision_at_5
            value: 15.840000000000002
          - type: recall_at_1
            value: 54.800000000000004
          - type: recall_at_10
            value: 86.9
          - type: recall_at_100
            value: 97
          - type: recall_at_1000
            value: 98.9
          - type: recall_at_3
            value: 72.7
          - type: recall_at_5
            value: 79.2
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 51.758368603308966
          - type: f1
            value: 40.249503783871596
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 89.08067542213884
          - type: ap
            value: 60.31281895139249
          - type: f1
            value: 84.20883153932607
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 74.04193577551248
          - type: cos_sim_spearman
            value: 79.81875884845549
          - type: euclidean_pearson
            value: 80.02581187503708
          - type: euclidean_spearman
            value: 79.81877215060574
          - type: manhattan_pearson
            value: 80.01767830530258
          - type: manhattan_spearman
            value: 79.81178852172727
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 39.90939429947956
          - type: mrr
            value: 39.71071428571429
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 68.485
          - type: map_at_10
            value: 78.27199999999999
          - type: map_at_100
            value: 78.54100000000001
          - type: map_at_1000
            value: 78.546
          - type: map_at_3
            value: 76.339
          - type: map_at_5
            value: 77.61099999999999
          - type: mrr_at_1
            value: 70.80199999999999
          - type: mrr_at_10
            value: 78.901
          - type: mrr_at_100
            value: 79.12400000000001
          - type: mrr_at_1000
            value: 79.128
          - type: mrr_at_3
            value: 77.237
          - type: mrr_at_5
            value: 78.323
          - type: ndcg_at_1
            value: 70.759
          - type: ndcg_at_10
            value: 82.191
          - type: ndcg_at_100
            value: 83.295
          - type: ndcg_at_1000
            value: 83.434
          - type: ndcg_at_3
            value: 78.57600000000001
          - type: ndcg_at_5
            value: 80.715
          - type: precision_at_1
            value: 70.759
          - type: precision_at_10
            value: 9.951
          - type: precision_at_100
            value: 1.049
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 29.660999999999998
          - type: precision_at_5
            value: 18.94
          - type: recall_at_1
            value: 68.485
          - type: recall_at_10
            value: 93.65
          - type: recall_at_100
            value: 98.434
          - type: recall_at_1000
            value: 99.522
          - type: recall_at_3
            value: 84.20100000000001
          - type: recall_at_5
            value: 89.261
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 77.45460659045055
          - type: f1
            value: 73.84987702455533
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 85.29926025554808
          - type: f1
            value: 84.40636286569843
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 57.599999999999994
          - type: map_at_10
            value: 64.691
          - type: map_at_100
            value: 65.237
          - type: map_at_1000
            value: 65.27
          - type: map_at_3
            value: 62.733000000000004
          - type: map_at_5
            value: 63.968
          - type: mrr_at_1
            value: 58.099999999999994
          - type: mrr_at_10
            value: 64.952
          - type: mrr_at_100
            value: 65.513
          - type: mrr_at_1000
            value: 65.548
          - type: mrr_at_3
            value: 63
          - type: mrr_at_5
            value: 64.235
          - type: ndcg_at_1
            value: 57.599999999999994
          - type: ndcg_at_10
            value: 68.19
          - type: ndcg_at_100
            value: 70.98400000000001
          - type: ndcg_at_1000
            value: 71.811
          - type: ndcg_at_3
            value: 64.276
          - type: ndcg_at_5
            value: 66.47999999999999
          - type: precision_at_1
            value: 57.599999999999994
          - type: precision_at_10
            value: 7.920000000000001
          - type: precision_at_100
            value: 0.9259999999999999
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 22.900000000000002
          - type: precision_at_5
            value: 14.799999999999999
          - type: recall_at_1
            value: 57.599999999999994
          - type: recall_at_10
            value: 79.2
          - type: recall_at_100
            value: 92.60000000000001
          - type: recall_at_1000
            value: 99
          - type: recall_at_3
            value: 68.7
          - type: recall_at_5
            value: 74
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 79.45
          - type: f1
            value: 79.25610578280538
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 85.43584190579317
          - type: cos_sim_ap
            value: 90.89979725191012
          - type: cos_sim_f1
            value: 86.48383937316358
          - type: cos_sim_precision
            value: 80.6392694063927
          - type: cos_sim_recall
            value: 93.24181626187962
          - type: dot_accuracy
            value: 85.38170005414185
          - type: dot_ap
            value: 90.87532457866699
          - type: dot_f1
            value: 86.48383937316358
          - type: dot_precision
            value: 80.6392694063927
          - type: dot_recall
            value: 93.24181626187962
          - type: euclidean_accuracy
            value: 85.43584190579317
          - type: euclidean_ap
            value: 90.90126652086121
          - type: euclidean_f1
            value: 86.48383937316358
          - type: euclidean_precision
            value: 80.6392694063927
          - type: euclidean_recall
            value: 93.24181626187962
          - type: manhattan_accuracy
            value: 85.43584190579317
          - type: manhattan_ap
            value: 90.87896997853466
          - type: manhattan_f1
            value: 86.47581441263573
          - type: manhattan_precision
            value: 81.18628359592215
          - type: manhattan_recall
            value: 92.5026399155227
          - type: max_accuracy
            value: 85.43584190579317
          - type: max_ap
            value: 90.90126652086121
          - type: max_f1
            value: 86.48383937316358
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 94.9
          - type: ap
            value: 93.1468223150745
          - type: f1
            value: 94.88918689508299
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 40.4831743182905
          - type: cos_sim_spearman
            value: 47.4163675550491
          - type: euclidean_pearson
            value: 46.456319899274924
          - type: euclidean_spearman
            value: 47.41567079730661
          - type: manhattan_pearson
            value: 46.48561639930895
          - type: manhattan_spearman
            value: 47.447721653461215
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 42.96423587663398
          - type: cos_sim_spearman
            value: 45.13742225167858
          - type: euclidean_pearson
            value: 39.275452114075435
          - type: euclidean_spearman
            value: 45.137763540967406
          - type: manhattan_pearson
            value: 39.24797626417764
          - type: manhattan_spearman
            value: 45.13817773119268
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 66.26687809086202
          - type: cos_sim_spearman
            value: 66.9569145816897
          - type: euclidean_pearson
            value: 65.72390780809788
          - type: euclidean_spearman
            value: 66.95406938095539
          - type: manhattan_pearson
            value: 65.6220809000381
          - type: manhattan_spearman
            value: 66.88531036320953
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 80.30831700726195
          - type: cos_sim_spearman
            value: 82.05184068558792
          - type: euclidean_pearson
            value: 81.73198597791563
          - type: euclidean_spearman
            value: 82.05326103582206
          - type: manhattan_pearson
            value: 81.70886400949136
          - type: manhattan_spearman
            value: 82.03473274756037
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 69.03398835347575
          - type: mrr
            value: 79.9212528613341
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 27.515
          - type: map_at_10
            value: 77.40599999999999
          - type: map_at_100
            value: 81.087
          - type: map_at_1000
            value: 81.148
          - type: map_at_3
            value: 54.327000000000005
          - type: map_at_5
            value: 66.813
          - type: mrr_at_1
            value: 89.764
          - type: mrr_at_10
            value: 92.58
          - type: mrr_at_100
            value: 92.663
          - type: mrr_at_1000
            value: 92.666
          - type: mrr_at_3
            value: 92.15299999999999
          - type: mrr_at_5
            value: 92.431
          - type: ndcg_at_1
            value: 89.777
          - type: ndcg_at_10
            value: 85.013
          - type: ndcg_at_100
            value: 88.62100000000001
          - type: ndcg_at_1000
            value: 89.184
          - type: ndcg_at_3
            value: 86.19200000000001
          - type: ndcg_at_5
            value: 84.909
          - type: precision_at_1
            value: 89.777
          - type: precision_at_10
            value: 42.218
          - type: precision_at_100
            value: 5.032
          - type: precision_at_1000
            value: 0.517
          - type: precision_at_3
            value: 75.335
          - type: precision_at_5
            value: 63.199000000000005
          - type: recall_at_1
            value: 27.515
          - type: recall_at_10
            value: 84.258
          - type: recall_at_100
            value: 95.908
          - type: recall_at_1000
            value: 98.709
          - type: recall_at_3
            value: 56.189
          - type: recall_at_5
            value: 70.50800000000001
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 54.635999999999996
          - type: f1
            value: 52.63073912739558
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 78.75676284855221
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 71.95583733802839
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 64.9
          - type: map_at_10
            value: 75.622
          - type: map_at_100
            value: 75.93900000000001
          - type: map_at_1000
            value: 75.93900000000001
          - type: map_at_3
            value: 73.933
          - type: map_at_5
            value: 74.973
          - type: mrr_at_1
            value: 65
          - type: mrr_at_10
            value: 75.676
          - type: mrr_at_100
            value: 75.994
          - type: mrr_at_1000
            value: 75.994
          - type: mrr_at_3
            value: 74.05000000000001
          - type: mrr_at_5
            value: 75.03999999999999
          - type: ndcg_at_1
            value: 64.9
          - type: ndcg_at_10
            value: 80.08999999999999
          - type: ndcg_at_100
            value: 81.44500000000001
          - type: ndcg_at_1000
            value: 81.45599999999999
          - type: ndcg_at_3
            value: 76.688
          - type: ndcg_at_5
            value: 78.53
          - type: precision_at_1
            value: 64.9
          - type: precision_at_10
            value: 9.379999999999999
          - type: precision_at_100
            value: 0.997
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 28.199999999999996
          - type: precision_at_5
            value: 17.8
          - type: recall_at_1
            value: 64.9
          - type: recall_at_10
            value: 93.8
          - type: recall_at_100
            value: 99.7
          - type: recall_at_1000
            value: 99.8
          - type: recall_at_3
            value: 84.6
          - type: recall_at_5
            value: 89
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 89.34
          - type: ap
            value: 75.20638024616892
          - type: f1
            value: 87.88648489072128

xiaobu-embedding-v2

基于piccolo-embedding[1],主要改动如下:

  • 合成数据替换为xiaobu-embedding-v1[2]所积累数据
  • 在circle_loss[3]视角下统一处理CMTEB的6类问题,最大优势是可充分利用原始数据集中的多个正例,其次是可一定程度上避免考虑多个不同loss之间的权重问题

Usage (Sentence-Transformers)

pip install -U sentence-transformers

相似度计算:

from sentence_transformers import SentenceTransformer
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = SentenceTransformer('lier007/xiaobu-embedding-v2')
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)

Reference

  1. https://github.com/hjq133/piccolo-embedding
  2. https://huggingface.co/lier007/xiaobu-embedding
  3. https://arxiv.org/abs/2002.10857