80372146 commited on
Commit
1878ca3
·
1 Parent(s): 2e35727

init commit

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 1024, "out_features": 1792, "bias": true, "activation_function": "torch.nn.modules.linear.Identity"}
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd927506d94e1574d3e5922a4554127bca9aa79cf9b885dbcf7118d8811d93ac
3
+ size 7348796
README.md ADDED
@@ -0,0 +1,1084 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: piccolo-embedding_mixed2
6
+ results:
7
+ - task:
8
+ type: STS
9
+ dataset:
10
+ type: C-MTEB/AFQMC
11
+ name: MTEB AFQMC
12
+ config: default
13
+ split: validation
14
+ revision: None
15
+ metrics:
16
+ - type: cos_sim_pearson
17
+ value: 56.918538280469875
18
+ - type: cos_sim_spearman
19
+ value: 60.95597435855258
20
+ - type: euclidean_pearson
21
+ value: 59.73821610051437
22
+ - type: euclidean_spearman
23
+ value: 60.956778530262454
24
+ - type: manhattan_pearson
25
+ value: 59.739675774225475
26
+ - type: manhattan_spearman
27
+ value: 60.95243600302903
28
+ - task:
29
+ type: STS
30
+ dataset:
31
+ type: C-MTEB/ATEC
32
+ name: MTEB ATEC
33
+ config: default
34
+ split: test
35
+ revision: None
36
+ metrics:
37
+ - type: cos_sim_pearson
38
+ value: 56.79417977023184
39
+ - type: cos_sim_spearman
40
+ value: 58.80984726256814
41
+ - type: euclidean_pearson
42
+ value: 63.42225182281334
43
+ - type: euclidean_spearman
44
+ value: 58.80957930593542
45
+ - type: manhattan_pearson
46
+ value: 63.41128425333986
47
+ - type: manhattan_spearman
48
+ value: 58.80784321716389
49
+ - task:
50
+ type: Classification
51
+ dataset:
52
+ type: mteb/amazon_reviews_multi
53
+ name: MTEB AmazonReviewsClassification (zh)
54
+ config: zh
55
+ split: test
56
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
57
+ metrics:
58
+ - type: accuracy
59
+ value: 50.074000000000005
60
+ - type: f1
61
+ value: 47.11468271375511
62
+ - task:
63
+ type: STS
64
+ dataset:
65
+ type: C-MTEB/BQ
66
+ name: MTEB BQ
67
+ config: default
68
+ split: test
69
+ revision: None
70
+ metrics:
71
+ - type: cos_sim_pearson
72
+ value: 73.3412976021806
73
+ - type: cos_sim_spearman
74
+ value: 75.0799965464816
75
+ - type: euclidean_pearson
76
+ value: 73.7874729086686
77
+ - type: euclidean_spearman
78
+ value: 75.07910973646369
79
+ - type: manhattan_pearson
80
+ value: 73.7716616949607
81
+ - type: manhattan_spearman
82
+ value: 75.06089549008017
83
+ - task:
84
+ type: Clustering
85
+ dataset:
86
+ type: C-MTEB/CLSClusteringP2P
87
+ name: MTEB CLSClusteringP2P
88
+ config: default
89
+ split: test
90
+ revision: None
91
+ metrics:
92
+ - type: v_measure
93
+ value: 60.4206935177474
94
+ - task:
95
+ type: Clustering
96
+ dataset:
97
+ type: C-MTEB/CLSClusteringS2S
98
+ name: MTEB CLSClusteringS2S
99
+ config: default
100
+ split: test
101
+ revision: None
102
+ metrics:
103
+ - type: v_measure
104
+ value: 49.53654617222264
105
+ - task:
106
+ type: Reranking
107
+ dataset:
108
+ type: C-MTEB/CMedQAv1-reranking
109
+ name: MTEB CMedQAv1
110
+ config: default
111
+ split: test
112
+ revision: None
113
+ metrics:
114
+ - type: map
115
+ value: 90.96386786978509
116
+ - type: mrr
117
+ value: 92.8897619047619
118
+ - task:
119
+ type: Reranking
120
+ dataset:
121
+ type: C-MTEB/CMedQAv2-reranking
122
+ name: MTEB CMedQAv2
123
+ config: default
124
+ split: test
125
+ revision: None
126
+ metrics:
127
+ - type: map
128
+ value: 90.41014127763198
129
+ - type: mrr
130
+ value: 92.45039682539682
131
+ - task:
132
+ type: Retrieval
133
+ dataset:
134
+ type: C-MTEB/CmedqaRetrieval
135
+ name: MTEB CmedqaRetrieval
136
+ config: default
137
+ split: dev
138
+ revision: None
139
+ metrics:
140
+ - type: map_at_1
141
+ value: 26.901999999999997
142
+ - type: map_at_10
143
+ value: 40.321
144
+ - type: map_at_100
145
+ value: 42.176
146
+ - type: map_at_1000
147
+ value: 42.282
148
+ - type: map_at_3
149
+ value: 35.882
150
+ - type: map_at_5
151
+ value: 38.433
152
+ - type: mrr_at_1
153
+ value: 40.910000000000004
154
+ - type: mrr_at_10
155
+ value: 49.309999999999995
156
+ - type: mrr_at_100
157
+ value: 50.239
158
+ - type: mrr_at_1000
159
+ value: 50.278
160
+ - type: mrr_at_3
161
+ value: 46.803
162
+ - type: mrr_at_5
163
+ value: 48.137
164
+ - type: ndcg_at_1
165
+ value: 40.785
166
+ - type: ndcg_at_10
167
+ value: 47.14
168
+ - type: ndcg_at_100
169
+ value: 54.156000000000006
170
+ - type: ndcg_at_1000
171
+ value: 55.913999999999994
172
+ - type: ndcg_at_3
173
+ value: 41.669
174
+ - type: ndcg_at_5
175
+ value: 43.99
176
+ - type: precision_at_1
177
+ value: 40.785
178
+ - type: precision_at_10
179
+ value: 10.493
180
+ - type: precision_at_100
181
+ value: 1.616
182
+ - type: precision_at_1000
183
+ value: 0.184
184
+ - type: precision_at_3
185
+ value: 23.723
186
+ - type: precision_at_5
187
+ value: 17.249
188
+ - type: recall_at_1
189
+ value: 26.901999999999997
190
+ - type: recall_at_10
191
+ value: 58.25
192
+ - type: recall_at_100
193
+ value: 87.10900000000001
194
+ - type: recall_at_1000
195
+ value: 98.804
196
+ - type: recall_at_3
197
+ value: 41.804
198
+ - type: recall_at_5
199
+ value: 48.884
200
+ - task:
201
+ type: PairClassification
202
+ dataset:
203
+ type: C-MTEB/CMNLI
204
+ name: MTEB Cmnli
205
+ config: default
206
+ split: validation
207
+ revision: None
208
+ metrics:
209
+ - type: cos_sim_accuracy
210
+ value: 86.42212868310283
211
+ - type: cos_sim_ap
212
+ value: 92.83788702972741
213
+ - type: cos_sim_f1
214
+ value: 87.08912233141307
215
+ - type: cos_sim_precision
216
+ value: 84.24388111888112
217
+ - type: cos_sim_recall
218
+ value: 90.13327098433481
219
+ - type: dot_accuracy
220
+ value: 86.44618159951895
221
+ - type: dot_ap
222
+ value: 92.81146275060858
223
+ - type: dot_f1
224
+ value: 87.06857911250562
225
+ - type: dot_precision
226
+ value: 83.60232408005164
227
+ - type: dot_recall
228
+ value: 90.83469721767594
229
+ - type: euclidean_accuracy
230
+ value: 86.42212868310283
231
+ - type: euclidean_ap
232
+ value: 92.83805700492603
233
+ - type: euclidean_f1
234
+ value: 87.08803611738148
235
+ - type: euclidean_precision
236
+ value: 84.18066768492254
237
+ - type: euclidean_recall
238
+ value: 90.20341360766892
239
+ - type: manhattan_accuracy
240
+ value: 86.28983764281419
241
+ - type: manhattan_ap
242
+ value: 92.82818970981005
243
+ - type: manhattan_f1
244
+ value: 87.12625521832335
245
+ - type: manhattan_precision
246
+ value: 84.19101613606628
247
+ - type: manhattan_recall
248
+ value: 90.27355623100304
249
+ - type: max_accuracy
250
+ value: 86.44618159951895
251
+ - type: max_ap
252
+ value: 92.83805700492603
253
+ - type: max_f1
254
+ value: 87.12625521832335
255
+ - task:
256
+ type: Retrieval
257
+ dataset:
258
+ type: C-MTEB/CovidRetrieval
259
+ name: MTEB CovidRetrieval
260
+ config: default
261
+ split: dev
262
+ revision: None
263
+ metrics:
264
+ - type: map_at_1
265
+ value: 79.215
266
+ - type: map_at_10
267
+ value: 86.516
268
+ - type: map_at_100
269
+ value: 86.6
270
+ - type: map_at_1000
271
+ value: 86.602
272
+ - type: map_at_3
273
+ value: 85.52
274
+ - type: map_at_5
275
+ value: 86.136
276
+ - type: mrr_at_1
277
+ value: 79.663
278
+ - type: mrr_at_10
279
+ value: 86.541
280
+ - type: mrr_at_100
281
+ value: 86.625
282
+ - type: mrr_at_1000
283
+ value: 86.627
284
+ - type: mrr_at_3
285
+ value: 85.564
286
+ - type: mrr_at_5
287
+ value: 86.15899999999999
288
+ - type: ndcg_at_1
289
+ value: 79.663
290
+ - type: ndcg_at_10
291
+ value: 89.399
292
+ - type: ndcg_at_100
293
+ value: 89.727
294
+ - type: ndcg_at_1000
295
+ value: 89.781
296
+ - type: ndcg_at_3
297
+ value: 87.402
298
+ - type: ndcg_at_5
299
+ value: 88.479
300
+ - type: precision_at_1
301
+ value: 79.663
302
+ - type: precision_at_10
303
+ value: 9.926
304
+ - type: precision_at_100
305
+ value: 1.006
306
+ - type: precision_at_1000
307
+ value: 0.101
308
+ - type: precision_at_3
309
+ value: 31.226
310
+ - type: precision_at_5
311
+ value: 19.283
312
+ - type: recall_at_1
313
+ value: 79.215
314
+ - type: recall_at_10
315
+ value: 98.209
316
+ - type: recall_at_100
317
+ value: 99.579
318
+ - type: recall_at_1000
319
+ value: 100.0
320
+ - type: recall_at_3
321
+ value: 92.703
322
+ - type: recall_at_5
323
+ value: 95.364
324
+ - task:
325
+ type: Retrieval
326
+ dataset:
327
+ type: C-MTEB/DuRetrieval
328
+ name: MTEB DuRetrieval
329
+ config: default
330
+ split: dev
331
+ revision: None
332
+ metrics:
333
+ - type: map_at_1
334
+ value: 27.391
335
+ - type: map_at_10
336
+ value: 82.82000000000001
337
+ - type: map_at_100
338
+ value: 85.5
339
+ - type: map_at_1000
340
+ value: 85.533
341
+ - type: map_at_3
342
+ value: 57.802
343
+ - type: map_at_5
344
+ value: 72.82600000000001
345
+ - type: mrr_at_1
346
+ value: 92.80000000000001
347
+ - type: mrr_at_10
348
+ value: 94.83500000000001
349
+ - type: mrr_at_100
350
+ value: 94.883
351
+ - type: mrr_at_1000
352
+ value: 94.884
353
+ - type: mrr_at_3
354
+ value: 94.542
355
+ - type: mrr_at_5
356
+ value: 94.729
357
+ - type: ndcg_at_1
358
+ value: 92.7
359
+ - type: ndcg_at_10
360
+ value: 89.435
361
+ - type: ndcg_at_100
362
+ value: 91.78699999999999
363
+ - type: ndcg_at_1000
364
+ value: 92.083
365
+ - type: ndcg_at_3
366
+ value: 88.595
367
+ - type: ndcg_at_5
368
+ value: 87.53
369
+ - type: precision_at_1
370
+ value: 92.7
371
+ - type: precision_at_10
372
+ value: 42.4
373
+ - type: precision_at_100
374
+ value: 4.823
375
+ - type: precision_at_1000
376
+ value: 0.48900000000000005
377
+ - type: precision_at_3
378
+ value: 79.133
379
+ - type: precision_at_5
380
+ value: 66.8
381
+ - type: recall_at_1
382
+ value: 27.391
383
+ - type: recall_at_10
384
+ value: 90.069
385
+ - type: recall_at_100
386
+ value: 97.875
387
+ - type: recall_at_1000
388
+ value: 99.436
389
+ - type: recall_at_3
390
+ value: 59.367999999999995
391
+ - type: recall_at_5
392
+ value: 76.537
393
+ - task:
394
+ type: Retrieval
395
+ dataset:
396
+ type: C-MTEB/EcomRetrieval
397
+ name: MTEB EcomRetrieval
398
+ config: default
399
+ split: dev
400
+ revision: None
401
+ metrics:
402
+ - type: map_at_1
403
+ value: 54.800000000000004
404
+ - type: map_at_10
405
+ value: 65.289
406
+ - type: map_at_100
407
+ value: 65.845
408
+ - type: map_at_1000
409
+ value: 65.853
410
+ - type: map_at_3
411
+ value: 62.766999999999996
412
+ - type: map_at_5
413
+ value: 64.252
414
+ - type: mrr_at_1
415
+ value: 54.800000000000004
416
+ - type: mrr_at_10
417
+ value: 65.255
418
+ - type: mrr_at_100
419
+ value: 65.81700000000001
420
+ - type: mrr_at_1000
421
+ value: 65.824
422
+ - type: mrr_at_3
423
+ value: 62.683
424
+ - type: mrr_at_5
425
+ value: 64.248
426
+ - type: ndcg_at_1
427
+ value: 54.800000000000004
428
+ - type: ndcg_at_10
429
+ value: 70.498
430
+ - type: ndcg_at_100
431
+ value: 72.82300000000001
432
+ - type: ndcg_at_1000
433
+ value: 73.053
434
+ - type: ndcg_at_3
435
+ value: 65.321
436
+ - type: ndcg_at_5
437
+ value: 67.998
438
+ - type: precision_at_1
439
+ value: 54.800000000000004
440
+ - type: precision_at_10
441
+ value: 8.690000000000001
442
+ - type: precision_at_100
443
+ value: 0.97
444
+ - type: precision_at_1000
445
+ value: 0.099
446
+ - type: precision_at_3
447
+ value: 24.233
448
+ - type: precision_at_5
449
+ value: 15.840000000000002
450
+ - type: recall_at_1
451
+ value: 54.800000000000004
452
+ - type: recall_at_10
453
+ value: 86.9
454
+ - type: recall_at_100
455
+ value: 97.0
456
+ - type: recall_at_1000
457
+ value: 98.9
458
+ - type: recall_at_3
459
+ value: 72.7
460
+ - type: recall_at_5
461
+ value: 79.2
462
+ - task:
463
+ type: Classification
464
+ dataset:
465
+ type: C-MTEB/IFlyTek-classification
466
+ name: MTEB IFlyTek
467
+ config: default
468
+ split: validation
469
+ revision: None
470
+ metrics:
471
+ - type: accuracy
472
+ value: 51.758368603308966
473
+ - type: f1
474
+ value: 40.249503783871596
475
+ - task:
476
+ type: Classification
477
+ dataset:
478
+ type: C-MTEB/JDReview-classification
479
+ name: MTEB JDReview
480
+ config: default
481
+ split: test
482
+ revision: None
483
+ metrics:
484
+ - type: accuracy
485
+ value: 89.08067542213884
486
+ - type: ap
487
+ value: 60.31281895139249
488
+ - type: f1
489
+ value: 84.20883153932607
490
+ - task:
491
+ type: STS
492
+ dataset:
493
+ type: C-MTEB/LCQMC
494
+ name: MTEB LCQMC
495
+ config: default
496
+ split: test
497
+ revision: None
498
+ metrics:
499
+ - type: cos_sim_pearson
500
+ value: 74.04193577551248
501
+ - type: cos_sim_spearman
502
+ value: 79.81875884845549
503
+ - type: euclidean_pearson
504
+ value: 80.02581187503708
505
+ - type: euclidean_spearman
506
+ value: 79.81877215060574
507
+ - type: manhattan_pearson
508
+ value: 80.01767830530258
509
+ - type: manhattan_spearman
510
+ value: 79.81178852172727
511
+ - task:
512
+ type: Reranking
513
+ dataset:
514
+ type: C-MTEB/Mmarco-reranking
515
+ name: MTEB MMarcoReranking
516
+ config: default
517
+ split: dev
518
+ revision: None
519
+ metrics:
520
+ - type: map
521
+ value: 39.90939429947956
522
+ - type: mrr
523
+ value: 39.71071428571429
524
+ - task:
525
+ type: Retrieval
526
+ dataset:
527
+ type: C-MTEB/MMarcoRetrieval
528
+ name: MTEB MMarcoRetrieval
529
+ config: default
530
+ split: dev
531
+ revision: None
532
+ metrics:
533
+ - type: map_at_1
534
+ value: 68.485
535
+ - type: map_at_10
536
+ value: 78.27199999999999
537
+ - type: map_at_100
538
+ value: 78.54100000000001
539
+ - type: map_at_1000
540
+ value: 78.546
541
+ - type: map_at_3
542
+ value: 76.339
543
+ - type: map_at_5
544
+ value: 77.61099999999999
545
+ - type: mrr_at_1
546
+ value: 70.80199999999999
547
+ - type: mrr_at_10
548
+ value: 78.901
549
+ - type: mrr_at_100
550
+ value: 79.12400000000001
551
+ - type: mrr_at_1000
552
+ value: 79.128
553
+ - type: mrr_at_3
554
+ value: 77.237
555
+ - type: mrr_at_5
556
+ value: 78.323
557
+ - type: ndcg_at_1
558
+ value: 70.759
559
+ - type: ndcg_at_10
560
+ value: 82.191
561
+ - type: ndcg_at_100
562
+ value: 83.295
563
+ - type: ndcg_at_1000
564
+ value: 83.434
565
+ - type: ndcg_at_3
566
+ value: 78.57600000000001
567
+ - type: ndcg_at_5
568
+ value: 80.715
569
+ - type: precision_at_1
570
+ value: 70.759
571
+ - type: precision_at_10
572
+ value: 9.951
573
+ - type: precision_at_100
574
+ value: 1.049
575
+ - type: precision_at_1000
576
+ value: 0.106
577
+ - type: precision_at_3
578
+ value: 29.660999999999998
579
+ - type: precision_at_5
580
+ value: 18.94
581
+ - type: recall_at_1
582
+ value: 68.485
583
+ - type: recall_at_10
584
+ value: 93.65
585
+ - type: recall_at_100
586
+ value: 98.434
587
+ - type: recall_at_1000
588
+ value: 99.522
589
+ - type: recall_at_3
590
+ value: 84.20100000000001
591
+ - type: recall_at_5
592
+ value: 89.261
593
+ - task:
594
+ type: Classification
595
+ dataset:
596
+ type: mteb/amazon_massive_intent
597
+ name: MTEB MassiveIntentClassification (zh-CN)
598
+ config: zh-CN
599
+ split: test
600
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
601
+ metrics:
602
+ - type: accuracy
603
+ value: 77.45460659045055
604
+ - type: f1
605
+ value: 73.84987702455533
606
+ - task:
607
+ type: Classification
608
+ dataset:
609
+ type: mteb/amazon_massive_scenario
610
+ name: MTEB MassiveScenarioClassification (zh-CN)
611
+ config: zh-CN
612
+ split: test
613
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
614
+ metrics:
615
+ - type: accuracy
616
+ value: 85.29926025554808
617
+ - type: f1
618
+ value: 84.40636286569843
619
+ - task:
620
+ type: Retrieval
621
+ dataset:
622
+ type: C-MTEB/MedicalRetrieval
623
+ name: MTEB MedicalRetrieval
624
+ config: default
625
+ split: dev
626
+ revision: None
627
+ metrics:
628
+ - type: map_at_1
629
+ value: 57.599999999999994
630
+ - type: map_at_10
631
+ value: 64.691
632
+ - type: map_at_100
633
+ value: 65.237
634
+ - type: map_at_1000
635
+ value: 65.27
636
+ - type: map_at_3
637
+ value: 62.733000000000004
638
+ - type: map_at_5
639
+ value: 63.968
640
+ - type: mrr_at_1
641
+ value: 58.099999999999994
642
+ - type: mrr_at_10
643
+ value: 64.952
644
+ - type: mrr_at_100
645
+ value: 65.513
646
+ - type: mrr_at_1000
647
+ value: 65.548
648
+ - type: mrr_at_3
649
+ value: 63.0
650
+ - type: mrr_at_5
651
+ value: 64.235
652
+ - type: ndcg_at_1
653
+ value: 57.599999999999994
654
+ - type: ndcg_at_10
655
+ value: 68.19
656
+ - type: ndcg_at_100
657
+ value: 70.98400000000001
658
+ - type: ndcg_at_1000
659
+ value: 71.811
660
+ - type: ndcg_at_3
661
+ value: 64.276
662
+ - type: ndcg_at_5
663
+ value: 66.47999999999999
664
+ - type: precision_at_1
665
+ value: 57.599999999999994
666
+ - type: precision_at_10
667
+ value: 7.920000000000001
668
+ - type: precision_at_100
669
+ value: 0.9259999999999999
670
+ - type: precision_at_1000
671
+ value: 0.099
672
+ - type: precision_at_3
673
+ value: 22.900000000000002
674
+ - type: precision_at_5
675
+ value: 14.799999999999999
676
+ - type: recall_at_1
677
+ value: 57.599999999999994
678
+ - type: recall_at_10
679
+ value: 79.2
680
+ - type: recall_at_100
681
+ value: 92.60000000000001
682
+ - type: recall_at_1000
683
+ value: 99.0
684
+ - type: recall_at_3
685
+ value: 68.7
686
+ - type: recall_at_5
687
+ value: 74.0
688
+ - task:
689
+ type: Classification
690
+ dataset:
691
+ type: C-MTEB/MultilingualSentiment-classification
692
+ name: MTEB MultilingualSentiment
693
+ config: default
694
+ split: validation
695
+ revision: None
696
+ metrics:
697
+ - type: accuracy
698
+ value: 79.45
699
+ - type: f1
700
+ value: 79.25610578280538
701
+ - task:
702
+ type: PairClassification
703
+ dataset:
704
+ type: C-MTEB/OCNLI
705
+ name: MTEB Ocnli
706
+ config: default
707
+ split: validation
708
+ revision: None
709
+ metrics:
710
+ - type: cos_sim_accuracy
711
+ value: 85.43584190579317
712
+ - type: cos_sim_ap
713
+ value: 90.89979725191012
714
+ - type: cos_sim_f1
715
+ value: 86.48383937316358
716
+ - type: cos_sim_precision
717
+ value: 80.6392694063927
718
+ - type: cos_sim_recall
719
+ value: 93.24181626187962
720
+ - type: dot_accuracy
721
+ value: 85.38170005414185
722
+ - type: dot_ap
723
+ value: 90.87532457866699
724
+ - type: dot_f1
725
+ value: 86.48383937316358
726
+ - type: dot_precision
727
+ value: 80.6392694063927
728
+ - type: dot_recall
729
+ value: 93.24181626187962
730
+ - type: euclidean_accuracy
731
+ value: 85.43584190579317
732
+ - type: euclidean_ap
733
+ value: 90.90126652086121
734
+ - type: euclidean_f1
735
+ value: 86.48383937316358
736
+ - type: euclidean_precision
737
+ value: 80.6392694063927
738
+ - type: euclidean_recall
739
+ value: 93.24181626187962
740
+ - type: manhattan_accuracy
741
+ value: 85.43584190579317
742
+ - type: manhattan_ap
743
+ value: 90.87896997853466
744
+ - type: manhattan_f1
745
+ value: 86.47581441263573
746
+ - type: manhattan_precision
747
+ value: 81.18628359592215
748
+ - type: manhattan_recall
749
+ value: 92.5026399155227
750
+ - type: max_accuracy
751
+ value: 85.43584190579317
752
+ - type: max_ap
753
+ value: 90.90126652086121
754
+ - type: max_f1
755
+ value: 86.48383937316358
756
+ - task:
757
+ type: Classification
758
+ dataset:
759
+ type: C-MTEB/OnlineShopping-classification
760
+ name: MTEB OnlineShopping
761
+ config: default
762
+ split: test
763
+ revision: None
764
+ metrics:
765
+ - type: accuracy
766
+ value: 94.9
767
+ - type: ap
768
+ value: 93.1468223150745
769
+ - type: f1
770
+ value: 94.88918689508299
771
+ - task:
772
+ type: STS
773
+ dataset:
774
+ type: C-MTEB/PAWSX
775
+ name: MTEB PAWSX
776
+ config: default
777
+ split: test
778
+ revision: None
779
+ metrics:
780
+ - type: cos_sim_pearson
781
+ value: 40.4831743182905
782
+ - type: cos_sim_spearman
783
+ value: 47.4163675550491
784
+ - type: euclidean_pearson
785
+ value: 46.456319899274924
786
+ - type: euclidean_spearman
787
+ value: 47.41567079730661
788
+ - type: manhattan_pearson
789
+ value: 46.48561639930895
790
+ - type: manhattan_spearman
791
+ value: 47.447721653461215
792
+ - task:
793
+ type: STS
794
+ dataset:
795
+ type: C-MTEB/QBQTC
796
+ name: MTEB QBQTC
797
+ config: default
798
+ split: test
799
+ revision: None
800
+ metrics:
801
+ - type: cos_sim_pearson
802
+ value: 42.96423587663398
803
+ - type: cos_sim_spearman
804
+ value: 45.13742225167858
805
+ - type: euclidean_pearson
806
+ value: 39.275452114075435
807
+ - type: euclidean_spearman
808
+ value: 45.137763540967406
809
+ - type: manhattan_pearson
810
+ value: 39.24797626417764
811
+ - type: manhattan_spearman
812
+ value: 45.13817773119268
813
+ - task:
814
+ type: STS
815
+ dataset:
816
+ type: mteb/sts22-crosslingual-sts
817
+ name: MTEB STS22 (zh)
818
+ config: zh
819
+ split: test
820
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
821
+ metrics:
822
+ - type: cos_sim_pearson
823
+ value: 66.26687809086202
824
+ - type: cos_sim_spearman
825
+ value: 66.9569145816897
826
+ - type: euclidean_pearson
827
+ value: 65.72390780809788
828
+ - type: euclidean_spearman
829
+ value: 66.95406938095539
830
+ - type: manhattan_pearson
831
+ value: 65.6220809000381
832
+ - type: manhattan_spearman
833
+ value: 66.88531036320953
834
+ - task:
835
+ type: STS
836
+ dataset:
837
+ type: C-MTEB/STSB
838
+ name: MTEB STSB
839
+ config: default
840
+ split: test
841
+ revision: None
842
+ metrics:
843
+ - type: cos_sim_pearson
844
+ value: 80.30831700726195
845
+ - type: cos_sim_spearman
846
+ value: 82.05184068558792
847
+ - type: euclidean_pearson
848
+ value: 81.73198597791563
849
+ - type: euclidean_spearman
850
+ value: 82.05326103582206
851
+ - type: manhattan_pearson
852
+ value: 81.70886400949136
853
+ - type: manhattan_spearman
854
+ value: 82.03473274756037
855
+ - task:
856
+ type: Reranking
857
+ dataset:
858
+ type: C-MTEB/T2Reranking
859
+ name: MTEB T2Reranking
860
+ config: default
861
+ split: dev
862
+ revision: None
863
+ metrics:
864
+ - type: map
865
+ value: 69.03398835347575
866
+ - type: mrr
867
+ value: 79.9212528613341
868
+ - task:
869
+ type: Retrieval
870
+ dataset:
871
+ type: C-MTEB/T2Retrieval
872
+ name: MTEB T2Retrieval
873
+ config: default
874
+ split: dev
875
+ revision: None
876
+ metrics:
877
+ - type: map_at_1
878
+ value: 27.515
879
+ - type: map_at_10
880
+ value: 77.40599999999999
881
+ - type: map_at_100
882
+ value: 81.087
883
+ - type: map_at_1000
884
+ value: 81.148
885
+ - type: map_at_3
886
+ value: 54.327000000000005
887
+ - type: map_at_5
888
+ value: 66.813
889
+ - type: mrr_at_1
890
+ value: 89.764
891
+ - type: mrr_at_10
892
+ value: 92.58
893
+ - type: mrr_at_100
894
+ value: 92.663
895
+ - type: mrr_at_1000
896
+ value: 92.666
897
+ - type: mrr_at_3
898
+ value: 92.15299999999999
899
+ - type: mrr_at_5
900
+ value: 92.431
901
+ - type: ndcg_at_1
902
+ value: 89.777
903
+ - type: ndcg_at_10
904
+ value: 85.013
905
+ - type: ndcg_at_100
906
+ value: 88.62100000000001
907
+ - type: ndcg_at_1000
908
+ value: 89.184
909
+ - type: ndcg_at_3
910
+ value: 86.19200000000001
911
+ - type: ndcg_at_5
912
+ value: 84.909
913
+ - type: precision_at_1
914
+ value: 89.777
915
+ - type: precision_at_10
916
+ value: 42.218
917
+ - type: precision_at_100
918
+ value: 5.032
919
+ - type: precision_at_1000
920
+ value: 0.517
921
+ - type: precision_at_3
922
+ value: 75.335
923
+ - type: precision_at_5
924
+ value: 63.199000000000005
925
+ - type: recall_at_1
926
+ value: 27.515
927
+ - type: recall_at_10
928
+ value: 84.258
929
+ - type: recall_at_100
930
+ value: 95.908
931
+ - type: recall_at_1000
932
+ value: 98.709
933
+ - type: recall_at_3
934
+ value: 56.189
935
+ - type: recall_at_5
936
+ value: 70.50800000000001
937
+ - task:
938
+ type: Classification
939
+ dataset:
940
+ type: C-MTEB/TNews-classification
941
+ name: MTEB TNews
942
+ config: default
943
+ split: validation
944
+ revision: None
945
+ metrics:
946
+ - type: accuracy
947
+ value: 54.635999999999996
948
+ - type: f1
949
+ value: 52.63073912739558
950
+ - task:
951
+ type: Clustering
952
+ dataset:
953
+ type: C-MTEB/ThuNewsClusteringP2P
954
+ name: MTEB ThuNewsClusteringP2P
955
+ config: default
956
+ split: test
957
+ revision: None
958
+ metrics:
959
+ - type: v_measure
960
+ value: 78.75676284855221
961
+ - task:
962
+ type: Clustering
963
+ dataset:
964
+ type: C-MTEB/ThuNewsClusteringS2S
965
+ name: MTEB ThuNewsClusteringS2S
966
+ config: default
967
+ split: test
968
+ revision: None
969
+ metrics:
970
+ - type: v_measure
971
+ value: 71.95583733802839
972
+ - task:
973
+ type: Retrieval
974
+ dataset:
975
+ type: C-MTEB/VideoRetrieval
976
+ name: MTEB VideoRetrieval
977
+ config: default
978
+ split: dev
979
+ revision: None
980
+ metrics:
981
+ - type: map_at_1
982
+ value: 64.9
983
+ - type: map_at_10
984
+ value: 75.622
985
+ - type: map_at_100
986
+ value: 75.93900000000001
987
+ - type: map_at_1000
988
+ value: 75.93900000000001
989
+ - type: map_at_3
990
+ value: 73.933
991
+ - type: map_at_5
992
+ value: 74.973
993
+ - type: mrr_at_1
994
+ value: 65.0
995
+ - type: mrr_at_10
996
+ value: 75.676
997
+ - type: mrr_at_100
998
+ value: 75.994
999
+ - type: mrr_at_1000
1000
+ value: 75.994
1001
+ - type: mrr_at_3
1002
+ value: 74.05000000000001
1003
+ - type: mrr_at_5
1004
+ value: 75.03999999999999
1005
+ - type: ndcg_at_1
1006
+ value: 64.9
1007
+ - type: ndcg_at_10
1008
+ value: 80.08999999999999
1009
+ - type: ndcg_at_100
1010
+ value: 81.44500000000001
1011
+ - type: ndcg_at_1000
1012
+ value: 81.45599999999999
1013
+ - type: ndcg_at_3
1014
+ value: 76.688
1015
+ - type: ndcg_at_5
1016
+ value: 78.53
1017
+ - type: precision_at_1
1018
+ value: 64.9
1019
+ - type: precision_at_10
1020
+ value: 9.379999999999999
1021
+ - type: precision_at_100
1022
+ value: 0.997
1023
+ - type: precision_at_1000
1024
+ value: 0.1
1025
+ - type: precision_at_3
1026
+ value: 28.199999999999996
1027
+ - type: precision_at_5
1028
+ value: 17.8
1029
+ - type: recall_at_1
1030
+ value: 64.9
1031
+ - type: recall_at_10
1032
+ value: 93.8
1033
+ - type: recall_at_100
1034
+ value: 99.7
1035
+ - type: recall_at_1000
1036
+ value: 99.8
1037
+ - type: recall_at_3
1038
+ value: 84.6
1039
+ - type: recall_at_5
1040
+ value: 89.0
1041
+ - task:
1042
+ type: Classification
1043
+ dataset:
1044
+ type: C-MTEB/waimai-classification
1045
+ name: MTEB Waimai
1046
+ config: default
1047
+ split: test
1048
+ revision: None
1049
+ metrics:
1050
+ - type: accuracy
1051
+ value: 89.34
1052
+ - type: ap
1053
+ value: 75.20638024616892
1054
+ - type: f1
1055
+ value: 87.88648489072128
1056
+ ---
1057
+ # xiaobu-embedding-v2
1058
+
1059
+ 基于piccolo-embedding[1],主要改动如下:
1060
+ - 合成数据替换为xiaobu-embedding-v1[2]所积累数据
1061
+ - 在circle_loss[3]视角下统一处理CMTEB的6类问题,最大优势是可充分利用原始数据集中的多个正例,其次是可一定程度上避免考虑多个不同loss之间的权重问题
1062
+
1063
+ ## Usage (Sentence-Transformers)
1064
+
1065
+ ```
1066
+ pip install -U sentence-transformers
1067
+ ```
1068
+ 相似度计算:
1069
+ ```python
1070
+ from sentence_transformers import SentenceTransformer
1071
+ sentences_1 = ["样例数据-1", "样例数据-2"]
1072
+ sentences_2 = ["样例数据-3", "样例数据-4"]
1073
+ model = SentenceTransformer('lier007/xiaobu-embedding-v2')
1074
+ embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
1075
+ embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
1076
+ similarity = embeddings_1 @ embeddings_2.T
1077
+ print(similarity)
1078
+ ```
1079
+
1080
+
1081
+ ## Reference
1082
+ 1. https://github.com/hjq133/piccolo-embedding
1083
+ 2. https://huggingface.co/lier007/xiaobu-embedding
1084
+ 3. https://arxiv.org/abs/2002.10857
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 21128
31
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7a16bd9bf2013e86160282b1cb5d145792d74fd710cd99bed42e9fff1fcfb82
3
+ size 1302216550
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff